Nicolet™ Summit™ OA FTIR Spectrometer
Nicolet™ Summit™ OA FTIR Spectrometer
Nicolet™ Summit™ OA FTIR Spectrometer
Nicolet™ Summit™ OA FTIR Spectrometer
Thermo Scientific™

Nicolet™ Summit™ OA FTIR Spectrometer

The Thermo Scientific Nicolet Summit OA FTIR spectrometer is a dedicated analyzer for rapid characterization of oils, liquids, syrups and pastes samples.
Have Questions?
카탈로그 번호용도(애플리케이션)
912A1065Oils, Liquids, Syrups and Pastes; Quality Control QA/QC; Food & Beverage; Automotive
카탈로그 번호 912A1065
제품 가격(KRW)
-
견적 요청하기
용도(애플리케이션):
Oils, Liquids, Syrups and Pastes; Quality Control QA/QC; Food & Beverage; Automotive

Thermo Scientific™ Nicolet™ Summit™ OA FTIR 분광기는 오일, 액체, 시럽 및 페이스트 샘플의 신속한 특성화를 위한 전용 분석기입니다. 통합된 ZnSe 수평 감쇠 전반사(HATR) 액세서리는 일정하고 재현 가능한 경로 길이를 제공하여 정성, 정량 분석에 모두 이상적입니다. 내장된 Windows™ 컴퓨터에서 실행되는 직관적인 Thermo Scientific™ OMNIC™ Paradigm 소프트웨어를 사용하여 워크플로로 작업을 자동화하여 측정 단계를 줄여보십시오.

Summit OA FTIR 분광기 Optics  

최고의 신뢰성과 정확성을 위해 Nicolet Summit OA FTIR 분광기는 고유한 LightDrive 광학 엔진으로 설계되었습니다.

  • 향상된 데이터 재현성: 최첨단 적외선 소스는 핫스팟 마이그레이션을 제거하여 특히 통합 HATR 액세서리를 통해 보다 일관된 스펙트럼 데이터를 제공합니다.
  • 저렴한 유지보수 비용: IR 소스, 간섭계 및 레이저에 대한 10년 보증 덕분에 유지 관리가 최소화됩니다. Unity™ Lab Services 또는 전 세계 자격을 갖춘 딜러 네트워크에서 서비스 및 지원 계약과 교육을 이용할 수도 있습니다.
  • 공장에서 검증된 사양: “일반적인”, “달성 가능한” 결과 이상을 생성합니다.

Summit OA FTIR 분광기 재료 분석 소프트웨어  

OMNIC Paradigm 소프트웨어의 사용자 친화적인 인터페이스는 실험실 생활을 단순하게 돕습니다.. 데스크톱, 터치스크린 또는 운영자 모.

  • 워크플로 설정 시간 단축: 드래그 앤 드롭 기능이 있는 직관적이고 시각적인 워크플로 작성기가 워크플로 생성을 안내합니다.
  • 다양한 작동 모드: OMNIC Paradigm 데스크톱 모드를 사용하면 대시보드 화면에서 필요한 것을 빠르게 찾고, 라이브러리를 만들거나, 다중 구성 요소 검색을 수행할 수 있습니다. 운영 모드를 사용하여 운영자에게 패키지 워크플로를 실행하기 위한 간소화된 인터페이스를 제공합니다.
  • 언제 어디서나 데이터 분석: 전체 Wi-Fi 연결을 사용하여 클라우드에서 Thermo Fisher Connect 계정으로 데이터를 보내고 실험실 밖에서도 데이터를 분석할 수 있습니다. 또는 전 세계 어디에서나 동료와 데이터를 공유하고 협업하여 연구를 가속화할 수 있습니다.
Summit OA FTIR 분광기 응용 분야:
  • 오일  
  • 액체
  • 시럽 및 페이스트
  • 품질 관리 QA/QC
  • 식품 및 음료
  • 자동차

사양
빔 스플리터KBr/Ge mid-infrared optimized
구성 요소LightDrive Optical Engine components: source, laser, interferometer and detector
설명Nicolet Summit OA FTIR Spectrometer
검출기 유형Fast-recovery deuterated triglycine sulfate (DTGS)
치수(깊이 x 폭 x 높이)32 x 34 x 24 cm (12.7 x 13.3 x 9.6 in.)
전기 요구사항100/240 V, 47/63 Hz, 110 W
용도(애플리케이션)Oils, Liquids, Syrups and Pastes; Quality Control QA/QC; Food & Beverage; Automotive
용도(장비)Integrated zinc selenide (ZnSe) horizontal attenuated total reflectance (HATR)
소스 유형Single-point source with non-migrating hotspot for unmatched data reproducibility (10-year warranty)
스펙트럼 범위6000 to 650 cm-1
중량(영국식 단위)27.8 lb.
중량(미터법)12.6 kg
폭(영국식 단위)13.3 in
폭(미터법)34 cm
전압100/240 V
Unit SizeEach

자주 묻는 질문(FAQ)

What is Raman spectroscopy?

In Raman spectroscopy, an unknown sample of material is illuminated with monochromatic (single wavelength or single frequency) laser light, which can be absorbed, transmitted, reflected, or scattered by the sample. Light scattered from the sample is due to either elastic collisions of the light with the sample's molecules (Rayleigh scatter) or inelastic collisions (Raman scatter). Whereas Rayleigh scattered light has the same frequency (wavelength) of the incident laser light, Raman scattered light returns from the sample at different frequencies corresponding to the vibrational frequencies of the bonds of the molecules in the sample.

If you wish to learn more about Raman spectroscopy, visit our online Raman Spectroscopy Academy (https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/raman-technology.html), where you will find basic Raman tutorials, advanced Raman webinars on sample applications, and a helpful instrument guide.

Using the Beer-Lambert law in FTIR ATR for quantitative analysis of a time-sensitive, migrating substance (e.g., erucamide) in a polymer is difficult. How can this be overcome?

The Beer-Lambert law is based on stable samples and reproducible conditions. In ATR, you have two concerns. First, the sample must make contact with the crystal in a consistent manner. If the material is rough or crystalline, you must ensure reproducibility. Grinding the material to a fine powder may be necessary. Second, ATR is a surface technique, examining the sample to a depth of around 1-4 microns. If the additive or target molecule is migrating further away, you will lose the signal. In this case, transmission, which illuminates the entire sample and entire thickness, may be a viable option (depending upon thickness). In some cases, the application of pressure can change the signal due to changes in the crystallinity or orientation of polymer strands in the sample. Any deeper insights would require an understanding of the specific sample involved.

What types of sampling cells and detectors are used for protein analysis using Fourier Transform Infrared Spectroscopy (FTIR)?

One key experimental step in protein analysis is the removal of the water bands (most proteins are in buffers). This requires highly controlled path-length transmission cells or ATR. Most historical work was done in 6-10 micron path length transmission cells using BaF2 or similar windows. The analytical region is roughly between 1400 and 1750cm-1 where these windows are transmissive. Recently, ATR devices using silicon, germanium, or diamond windows have become more prevalent. Reactions or binding of proteins to the crystal can occur with ZnSe devices (due to surface charges); sometimes this is desired but often it is not. Most of the literature is based on transmission cells. Protein analysis requires skill and consistency, so training is essential for most laboratories.

What is the advantage of DRIFTS compared to ATR technique in Fourier Transform Infrared Spectroscopy (FTIR)? What is the difference?

DRIFTS is used in both mid-IR and near-IR. In the mid-IR, DRIFTS requires the sample be blended with diluents like KBr, with 3-10% sample. This is typically undesirable as the sample is now mixed. However, DRIFTS is heavily used in catalysis research where powdered material is exposed to high temperature, elevated pressures, and mixtures of reactant gases. Several accessory suppliers make devices specific for this. In the near-IR, DRIFTS is used without dilution through direct measurement - many hand-held probes exist allowing analysis through a container wall (like plastic bags) meaning the sample can be analyzed without touching or contaminating it.

ATR involves making contact with the sample by forcing it into contact with a crystal. ATR generally does not require dilution and works well with solids like credit cards or car bumpers which would be tough in DRIFTS. ATR has, for the most part, displaced DRIFTS in the mid-IR except in special cases, while DRIFTS remains a method of choice in the near-IR world.

What are some subtleties and scenarios in inorganic applications for Fourier Transform Infrared Spectroscopy (FTIR)?

Fourier Transform Infrared Spectroscopy (FTIR) responds to a change in dipole moment, regardless of whether it is organic or inorganic. Metal oxides, carbonates, and carbonyls are good examples. The basic equation states that the wavenumber is proportional to the square root of the spring constant (bond strength) and one over the square root of the reduced mass. Simply put, as mass of the atoms involved in the bond goes up, the wavenumber goes down. Many inorganics have peaks below 400cm-1, such as ferrocene, acetylferrocene and cadmium oxide. This necessitates the use of “far-IR” optics. Many forensics users have found far-IR useful in identifying paint chips, due to their inorganic content. There are several ATR accessories that now permit far-IR ATR (mostly monolithic diamond devices). The Thermo Scientific Nicolet iS50 FTIR Spectrometer was designed to make far-IR performance trivial with a built-in ATR as well. Ultimately, if you have further interest in this area, you need to speak with an FTIR sales person to understand the capabilities and limitations.