Dextran, Fluorescein, 10,000 MW, Anionic, Lysine Fixable (Fluoro-Emerald)
Dextran, Fluorescein, 10,000 MW, Anionic, Lysine Fixable (Fluoro-Emerald)
Invitrogen™

Dextran, Fluorescein, 10,000 MW, Anionic, Lysine Fixable (Fluoro-Emerald)

Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of live자세히 알아보기
Have Questions?
카탈로그 번호수량
D182025 mg
카탈로그 번호 D1820
제품 가격(KRW)
431,000
온라인 행사
Ends: 31-Dec-2025
507,000
할인액 76,000 (15%)
Each
카트에 추가하기
수량:
25 mg
제품 가격(KRW)
431,000
온라인 행사
Ends: 31-Dec-2025
507,000
할인액 76,000 (15%)
Each
카트에 추가하기
Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of live cells, and to report the hydrodynamic properties of the cytoplasmic matrix. The labeled dextran is commonly introduced into the cells via microinjection.

Need a different emission spectrum or longer tracking? View our other mammalian cell tracking products.

Dextran Specifications:

Label (Ex/Em): Fluorescein (494/521)
Size: 10,000 MW
Charge: Anionic
Fixable: Fixable via Lysine

High Manufacturing Standards of Molecular Probes™ Dextrans
We offer more than 50 fluorescent and biotinylated dextran conjugates in several molecular weight ranges. Dextrans are hydrophilic polysaccharides characterized by their moderate-to-high molecular weight, good water solubility, and low toxicity. They also generally exhibit low immunogeniticy. Dextrans are biologically inert due to their uncommon poly-(α-D-1,6-glucose) linkages, which render them resistant to cleavage by most endogenous cellular glycosidases.

In most cases, Molecular Probes™ fluorescent dextrans are much brighter and have higher negative charge than dextrans available from other sources. Furthermore, we use rigorous methods for removing as much unconjugated dye as practical, and then assay our dextran conjugates by thin-layer chromatography to help ensure the absence of low molecular weight contaminants.

A Wide Selection of Substituents and Molecular Weights
Molecular Probes™ dextrans are conjugated to biotin or a wide variety of fluorophores, including seven of our Alexa Fluor™ dyes (Molecular Probes dextran conjugates–Table 14.4) and are available in these nominal molecular weights (MW): 3,000; 10,000; 40,000; 70,000; 500,000; and 2,000,000 daltons.

Dextran Net Charge and Fixability
We employ succinimidyl coupling of our dyes to the dextran molecule, which, in most cases, results in a neutral or anionic dextran. The reaction used to produce the Rhodamine Green™ and Alexa Fluor 488 dextrans results in the final product being neutral, anionic, or cationic. The Alexa Fluor, Cascade Blue, lucifer yellow, fluorescein, and Oregon Green dextrans are intrinsically anionic, whereas most of the dextrans labeled with the zwitterionic rhodamine B, tetramethylrhodamine, and Texas Red™ dyes are essentially neutral. To produce more highly anionic dextrans, we have developed a proprietary procedure for adding negatively charged groups to the dextran carriers; these products are designated “polyanionic” dextrans.

Some applications require that the dextran tracer be treated with formaldehyde or glutaraldehyde for subsequent analysis. For these applications, we offer “lysine-fixable” versions of most of our dextran conjugates of fluorophores or biotin. These dextrans have covalently bound lysine residues that permit dextran tracers to be conjugated to surrounding biomolecules by aldehyde-mediated fixation for subsequent detection by immunohistochemical and ultrastructural techniques. We have also shown that all of our 10,000 MW Alexa Fluor dextran conjugates can be fixed with aldehyde-based fixatives.

Key Applications Using Labeled Dextrans
There are a multitude of citations describing the use of labeled dextrans. Some of the most common uses include:

Neuronal tracing (anterograde and retrograde) in live cells
Cell lineage tracing in live cells
Neuroanatomical tracing
Examining intercellular communications (e.g., in gap junctions, during wound healing, and during embryonic development)
Investigating vascular permeability and blood–brain barrier integrity
Tracking endocytosis
Monitoring acidification (some dextran–dye conjugates are pH-sensitive)
Studying the hydrodynamic properties of the cytoplasmic matrix

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.
For Research Use Only. Not for use in diagnostic procedures.
사양
라벨 또는 염료Classic Dyes
제품 유형Dextran
수량25 mg
배송 조건Room Temperature
Excitation/Emission494/521 nm
제품라인Invitrogen
Unit SizeEach
구성 및 보관
Store in freezer (-5 to -30°C) and protect from light.

자주 묻는 질문(FAQ)

Why do I lose all signal from my neuronal tracer when I do a methanol fixation on my cells?

If the tracer you chose is a lipophilic dye and fix with methanol, the lipids are lost with the methanol. If you have to use methanol fixation then choose a tracer that will covalently bind to proteins in the neurons.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I stained my cells with a lipophilic cyanine dye, like DiI, but the signal was lost when I tried to follow up with antibody labeling. Why?

Since these dyes insert into lipid membranes, any disruption of the membranes leads to loss of the dye. This includes permeabilization with detergents like Triton X-100 or organic solvents like methanol. Permeabilization is necessary for intracellular antibody labeling, leading to loss of the dye. Instead, a reactive dye such as CFDA SE should be used to allow for covalent attachment to cellular components, thus providing for better retention upon fixation and permeabilization.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I labeled my neurons with DiI and then fixed and permeabilized and now I have no signal. What did I do wrong?

DiI is a lipophilic dye that resides mostly in lipids in the cell, when cells are permeabilized with detergent or fixed using alcohol this strips away the lipid and the dye. If permeabilization is required CM-DiI can be used because this binds covalently to proteins in the membrane; some signal is lost upon fixation/permeabilization, but enough signal should be retained to make detection possible.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Is there a way to label individual neurons without microinjecting?

The solid and crystalline forms of DiI and other related dyes (Cat. Nos. D282, D3911, D7757, and D12731) are sometimes placed in contact with a specific neuron where it will travel down the cell by lateral diffusion via the membrane. Alternatively, our NeuroTrace Tissue Labeling Paste can be scooped onto a needle and placed onto particular neurons.

Please see the information below for a comparison of our neuronal cell labeling methods:
Product:Method of labeling: Labeling intensity: Features
Neuron-specific antibodies: Primary antibodies directed to proteins expressed in neuronal cells: Proportional to the amount of protein expressed: Provides the only neuronal specific labeling method
Lipophilic neuronal ytracers: Hydrophobic dyes are incorporated into lipids in the cell: This labeling method provides the most intense labeling becuase of the abundant amount of lipids: Allows tracing of neurons throughout the sample
Membrane potential indicators: Dyes are loaded into live cells in aqueous buffers: Depends on either changes in structures due to the electrical field they are in, or dye influx due to depolarization: Changes in membrane potential play a central role in physiological processes, including nerve-impulse propagation, muscle contraction, and cell signaling

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What products do you have for neuronal tracing?

Please check out this web page (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing.html) for details.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

인용 및 참조 문헌 (51)

인용 및 참조 문헌
Abstract
Biogenesis of multilamellar bodies via autophagy.
Authors:Hariri M, Millane G, Guimond MP, Guay G, Dennis JW, Nabi IR
Journal:Mol Biol Cell
PubMed ID:10637306
'Transfection of Mv1Lu mink lung type II alveolar cells with beta1-6-N-acetylglucosaminyl transferase V is associated with the expression of large lysosomal vacuoles, which are immunofluorescently labeled for the lysosomal glycoprotein lysosomal-associated membrane protein-2 and the beta1-6-branched N-glycan-specific lectin phaseolis vulgaris leucoagglutinin. By electron microscopy, the vacuoles present the morphology of ... More
Gap junctional communication in the early Xenopus embryo.
Authors:Landesman Y, Goodenough DA, Paul DL
Journal:J Cell Biol
PubMed ID:10953017
'In the Xenopus embryo, blastomeres are joined by gap junctions that allow the movement of small molecules between neighboring cells. Previous studies using Lucifer yellow (LY) have reported asymmetries in the patterns of junctional communication suggesting involvement in dorso-ventral patterning. To explore that relationship, we systematically compared the transfer of ... More
Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress.
Authors:Grembowicz KP, Sprague D, McNeil PL
Journal:Mol Biol Cell
PubMed ID:10198070
'Mechanically stressed cells display increased levels of fos message and protein. Although the intracellular signaling pathways responsible for FOS induction have been extensively characterized, we still do not understand the nature of the primary cell mechanotransduction event responsible for converting an externally acting mechanical stressor into an intracellular signal cascade. ... More
Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization.
Authors:Machesky LM, Hall A
Journal:J Cell Biol
PubMed ID:9265656
'Most animal cells use a combination of actin-myosin-based contraction and actin polymerization- based protrusion to control their shape and motility. The small GTPase Rho triggers the formation of contractile stress fibers and focal adhesion complexes (Ridley, A.J., and A. Hall. 1992. Cell. 70:389-399) while a close relative, Rac, induces lamellipodial ... More
A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages.
Authors:Araki N, Johnson MT, Swanson JA
Journal:J Cell Biol
PubMed ID:8947549
'Phosphoinositide 3-kinase (PI 3-kinase) has been implicated in growth factor signal transduction and vesicular membrane traffic. It is thought to mediate the earliest steps leading from ligation of cell surface receptors to increased cell surface ruffling. We show here that inhibitors of PI 3-kinase inhibit endocytosis in macrophages, not by ... More