Nicolet iS5 FTIR Spectrometer
Nicolet iS5 FTIR Spectrometer
Nicolet iS5 FTIR Spectrometer
Nicolet iS5 FTIR Spectrometer
Nicolet iS5 FTIR Spectrometer
Thermo Scientific™

Nicolet iS5 FTIR Spectrometer

Thermo Scientific™ Nicolet™ iS™5 FT-IR Spectrometer는 작업량이 많은 실험실에서 생산 현장이나 보관 창고에 이르기까지 어떤 장소에서도 직면한 문제에 대한 최적의 솔루션을 제공합니다.

Have Questions?
카탈로그 번호제품 유형
IQLAADGAAGFAHDMAZANicolet iS5 FT-IR Spectrometer
카탈로그 번호 IQLAADGAAGFAHDMAZA
제품 가격(KRW)
-
견적 요청하기
제품 유형:
Nicolet iS5 FT-IR Spectrometer

Thermo Scientific™ Nicolet™ iS™5 FTIR Spectrometer는 작업량이 많은 실험실에서 생산 현장이나 보관 창고에 이르기까지 어떤 장소에서도 직면한 문제에 대한 최적의 솔루션을 제공합니다.

소형 크기, 경제적 가격 및 탁월한 성능이 결합된 Thermo Scientific™ Nicolet iS5 FTIR Spectrometer는 완벽한 성능, 사용의 편의성 및 가치를 제공하는 기초 수준의 분광기로서 전세계 기업, 대학 및 정부 기관 소속 실험실용으로 제품 보증 테스트 및 물질 식별에 이상적입니다.

유연성 있는 시료 처리 기능, 경량 설계(22 lb.(10kg)) 및 업계 최고의 Thermo Scientific™ OMNIC™ 소프트웨어를 결합한 Nicolet iS5 FTIR Spectrometer는 다른 Thermo Scientific Nicolet FTIR 분석기 모델과 마찬가지로 현장에서 입증된 동일한 FTIR 기술을 사용합니다.

Nicolet iS5 FTIR Spectrometer의 특징:

견고한 디자인
Nicolet iS5 FTIR Spectrometer는 가장 까다로운 환경에서도 문제없이 작동하도록 설계되었습니다.

  • 견고한 마그네슘 합금 프레임 내에 장착되어 현장에서 입증된 광학부
  • 열-제어 방식의 다이오드 레이저는 수년간 문제없이 사용 가능
  • 사용자가 부품에 직접 액세스할 수 있어 정비 비용 최소화
  • 넓은 범위의 온도 및 습도 조건에 대한 저항성
  • 진동, electromagnetic interference(EMI), 먼지, 경사진 환경 등이 모두 고려된 설계
  • 마그네슘 합금 구조는 강성, 열 특성, 진동 감쇠 및 경량화 등에서 우수한 기계적 특성 제공

간편한 유지보수
분석기의 IR 소스 또는 방습제 교체 시 정비 서비스를 요청하거나 기기를 열 필요도 없습니다.

사용법 학습 
FTIR 분광법의 사용 방법에 관한 자세한 내용은 당사의 FTIR 분광학 아카데미를 방문하여 확인할 수 있습니다.

클라우드 기반 FTIR 분광법 

모든 Nicolet FTIR 분석기는 이제 언제 어디서나 어떤 장치에서도 스펙트럼 데이터를 저장, 공유 및 해석할 수 있습니다. 연구자, 실험 담당자, 교육 담당자 및 학생 모두 Thermo Fisher Cloud 기반의 Thermo Fisher Connect 계정을 사용하여 OMNIC Anywhere 앱을 통해 데이터에 쉽게 액세스할 수 있습니다.  

  • 데이터 내보내기, 보기 및 공유 – PC, Apple 컴퓨터, Android 또는 iOS 장치에서 OMNIC Anywhere 앱을 사용하여 Nicolet .spa 스펙트럼 파일 보기, 스펙트럼 피크 표시 및 스펙트럼 베이스라인 수정 가능
  • 더 많은 저장 공간 추가 – 처음에는 10 GB의 저장 공간이 무료로 제공되며 필요에 따라 적은 비용으로 저장 공간 확장 가능. 또한 Thermo Fisher Connect 계정에 OMNIC .spa 파일뿐만 아니라 다른 파일(보고서 문서, .xls 등)도 저장 가능
  • 데이터 보안 – Thermo Fisher Connect는 업계 최고의 보안 및 데이터 보호 클라우드 컴퓨팅 플랫폼인 Amazon Web Service™를 사용하여 데이터 유출 또는 도난 방지
사양
제품 유형Nicolet iS5 FT-IR Spectrometer
Unit SizeEach

자주 묻는 질문(FAQ)

What is Raman spectroscopy?

In Raman spectroscopy, an unknown sample of material is illuminated with monochromatic (single wavelength or single frequency) laser light, which can be absorbed, transmitted, reflected, or scattered by the sample. Light scattered from the sample is due to either elastic collisions of the light with the sample's molecules (Rayleigh scatter) or inelastic collisions (Raman scatter). Whereas Rayleigh scattered light has the same frequency (wavelength) of the incident laser light, Raman scattered light returns from the sample at different frequencies corresponding to the vibrational frequencies of the bonds of the molecules in the sample.

If you wish to learn more about Raman spectroscopy, visit our online Raman Spectroscopy Academy (https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/raman-technology.html), where you will find basic Raman tutorials, advanced Raman webinars on sample applications, and a helpful instrument guide.

Using the Beer-Lambert law in FTIR ATR for quantitative analysis of a time-sensitive, migrating substance (e.g., erucamide) in a polymer is difficult. How can this be overcome?

The Beer-Lambert law is based on stable samples and reproducible conditions. In ATR, you have two concerns. First, the sample must make contact with the crystal in a consistent manner. If the material is rough or crystalline, you must ensure reproducibility. Grinding the material to a fine powder may be necessary. Second, ATR is a surface technique, examining the sample to a depth of around 1-4 microns. If the additive or target molecule is migrating further away, you will lose the signal. In this case, transmission, which illuminates the entire sample and entire thickness, may be a viable option (depending upon thickness). In some cases, the application of pressure can change the signal due to changes in the crystallinity or orientation of polymer strands in the sample. Any deeper insights would require an understanding of the specific sample involved.

What types of sampling cells and detectors are used for protein analysis using Fourier Transform Infrared Spectroscopy (FTIR)?

One key experimental step in protein analysis is the removal of the water bands (most proteins are in buffers). This requires highly controlled path-length transmission cells or ATR. Most historical work was done in 6-10 micron path length transmission cells using BaF2 or similar windows. The analytical region is roughly between 1400 and 1750cm-1 where these windows are transmissive. Recently, ATR devices using silicon, germanium, or diamond windows have become more prevalent. Reactions or binding of proteins to the crystal can occur with ZnSe devices (due to surface charges); sometimes this is desired but often it is not. Most of the literature is based on transmission cells. Protein analysis requires skill and consistency, so training is essential for most laboratories.

What is the advantage of DRIFTS compared to ATR technique in Fourier Transform Infrared Spectroscopy (FTIR)? What is the difference?

DRIFTS is used in both mid-IR and near-IR. In the mid-IR, DRIFTS requires the sample be blended with diluents like KBr, with 3-10% sample. This is typically undesirable as the sample is now mixed. However, DRIFTS is heavily used in catalysis research where powdered material is exposed to high temperature, elevated pressures, and mixtures of reactant gases. Several accessory suppliers make devices specific for this. In the near-IR, DRIFTS is used without dilution through direct measurement - many hand-held probes exist allowing analysis through a container wall (like plastic bags) meaning the sample can be analyzed without touching or contaminating it.

ATR involves making contact with the sample by forcing it into contact with a crystal. ATR generally does not require dilution and works well with solids like credit cards or car bumpers which would be tough in DRIFTS. ATR has, for the most part, displaced DRIFTS in the mid-IR except in special cases, while DRIFTS remains a method of choice in the near-IR world.

What are some subtleties and scenarios in inorganic applications for Fourier Transform Infrared Spectroscopy (FTIR)?

Fourier Transform Infrared Spectroscopy (FTIR) responds to a change in dipole moment, regardless of whether it is organic or inorganic. Metal oxides, carbonates, and carbonyls are good examples. The basic equation states that the wavenumber is proportional to the square root of the spring constant (bond strength) and one over the square root of the reduced mass. Simply put, as mass of the atoms involved in the bond goes up, the wavenumber goes down. Many inorganics have peaks below 400cm-1, such as ferrocene, acetylferrocene and cadmium oxide. This necessitates the use of “far-IR” optics. Many forensics users have found far-IR useful in identifying paint chips, due to their inorganic content. There are several ATR accessories that now permit far-IR ATR (mostly monolithic diamond devices). The Thermo Scientific Nicolet iS50 FTIR Spectrometer was designed to make far-IR performance trivial with a built-in ATR as well. Ultimately, if you have further interest in this area, you need to speak with an FTIR sales person to understand the capabilities and limitations.