Alexa Fluor™ 568 C5 Maleimide
Alexa Fluor&trade; 568 C<sub>5</sub> Maleimide
Invitrogen™

Alexa Fluor™ 568 C5 Maleimide

Alexa Fluor™ 568 is a bright, orange/red fluorescent dye with excitation ideally suited for the 568 nm laser line onRead more
Have Questions?
Catalog NumberQuantity
A20341
also known as A-20341
1 mg
Catalog number A20341
also known as A-20341
Price (MXN)
-
Quantity:
1 mg
Alexa Fluor™ 568 is a bright, orange/red fluorescent dye with excitation ideally suited for the 568 nm laser line on the Ar-Kr mixed-gas laser. Used for stable signal generation in imaging and flow cytometry, Alexa Fluor™ 568 dye is water soluble and pH-insensitive from pH 4 to pH 10. In addition to reactive dye formulations, we offer Alexa Fluor™ 568 dye conjugated to a variety of antibodies, peptides, proteins, tracers, and amplification substrates optimized for cellular labeling and detection (learn more).

The maleimide derivative of Alexa Fluor™ 568 is the most popular tool for conjugating the dye to a thiol group on a protein, oligonucleotide thiophosphate, or low molecular weight ligand. The resulting Alexa Fluor™ 568 conjugates exhibit brighter fluorescence and greater photostability than the conjugates of other spectrally similar fluorophores.

Detailed information about this AlexaFluor™ maleimide:

Fluorophore label: Alexa Fluor™ 568 dye
Reactive group: maleimide
Reactivity: thiol groups on proteins and ligands, oligonucleotide thiophosphates
Ex/Em of the conjugate: 575/600 nm
Extinction coefficient: 92,000 cm-1M-1
Spectrally similar dyes: Rhodamine red
Molecular weight: 880.92

Typical Conjugation Reaction
The protein should be dissolved at a concentration of 50-100 μM in a suitable buffer (10-100 mM phosphate, Tris, or HEPES) at pH 7.0-7.5. In this pH range, the protein thiol groups are sufficiently nucleophilic that they react almost exclusively with the reagent in the presence of the more numerous protein amine groups, which are protonated and relatively unreactive. We recommend reducing any disulfide bonds at this point using a 10-fold molar excess of reducing agent such as DTT or TCEP. Excess DTT must be removed by dialysis and subsequent thiol-modification should be carried out under oxygen-free conditions to prevent reformation of the disulfide bonds; these precautions are not necessary when using TCEP prior to maleimide conjugation.

The Alexa Fluor™ maleimide is typically dissolved in high-quality anhydrous dimethylsulfoxide (DMSO) at a concentration of 1-10 mM immediately prior to use, and stock solutions should be protected from light as much as possible. Generally, this stock solution is added to the protein solution dropwise while stirring to produce approximately 10-20 moles of reagent per mole of protein, and the reaction is allowed to proceed at room temperature for 2 hours or at 4°C overnight, protected from light. Any unreacted thiol-reactive reagent can be consumed by adding excess glutathione, mercaptoethanol, or other soluble low molecular weight thiol.

Conjugate Purification
Labeled antibodies are typically separated from free Alexa Fluor™ dye using a gel filtration column, such as Sephadex™ G-25, BioGel™ P-30, or equivalent. For much larger or smaller proteins, select a gel filtration media with an appropriate molecular weight cut-off or purify by dialysis. We offer several purification kits optimized for different quantities of antibody conjugate:
Antibody Conjugate Purification Kit for 0.5-1 mg (A33086)
Antibody Conjugate Purification Kit for 20-50 μg (A33087)
Antibody Conjugate Purification kit for 50-100 μg (A33088)

Learn More About Protein and Antibody Labeling
We offer a wide selection of Molecular Probes™ antibody and protein labeling kits to fit your starting material and your experimental setup. See our Antibody Labeling kits or use our Labeling Chemistry Selection Tool for other choices. To learn more about our labeling kits, read Kits for Labeling Proteins and Nucleic Acids—Section 1.2 in The Molecular Probes™ Handbook.

We’ll Make a Custom Conjugate for You
If you can’t find what you’re looking for in our online catalog, we’ll prepare a custom antibody or protein conjugate for you. Our custom conjugation service is efficient and confidential, and we stand by the quality of our work. We are ISO 13485:2000 certified.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Chemical ReactivityThiol
Emission600 nm
Excitation575 nm
Label or DyeAlexa Fluor™ 568
Product TypeDye
Quantity1 mg
Reactive MoietyMaleimide
Shipping ConditionRoom Temperature
Label TypeAlexa Fluor
Product LineAlexa Fluor
Unit SizeEach
Contents & Storage
Store in freezer (-5 to -30°C) and protect from light.

Citations & References (5)

Citations & References
Abstract
The citrate carrier CitS probed by single-molecule fluorescence spectroscopy.
Authors:Kästner CN, Prummer M, Sick B, Renn A, Wild UP, Dimroth P
Journal:Biophys J
PubMed ID:12609868
'A prominent region of the Na(+)-dependent citrate carrier (CitS) from Klebsiella pneumoniae is the highly conserved loop X-XI, which contains a putative citrate binding site. To monitor potential conformational changes within this region by single-molecule fluorescence spectroscopy, the target cysteines C398 and C414 of the single-Cys mutants (CitS-sC398, CitS-sC414) were ... More
Receptor-mediated endocytosis of phosphodiester oligonucleotides in the HepG2 cell line: evidence for non-conventional intracellular trafficking.
Authors:de Diesbach P, N'Kuli F, Berens C, Sonveaux E, Monsigny M, Roche AC, Courtoy PJ
Journal:Nucleic Acids Res
PubMed ID:11917011
'Having identified an oligonucleotide (ON) receptor in the HepG2 cell line, we have re-examined here the kinetics of ON uptake, subcellular distribution and intracellular localisation in these cells, at concentrations relevant for the study of a receptor-dependent process. Kinetic parameters of ON endocytosis were comparable with those of the receptor-mediated ... More
Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies.
Authors:Granier S, Kim S, Shafer AM, Ratnala VR, Fung JJ, Zare RN, Kobilka B,
Journal:J Biol Chem
PubMed ID:17347144
The C terminus of the beta(2)-adrenoceptor (AR) interacts with G protein-coupled receptor kinases and arrestins in an agonist-dependent manner, suggesting that conformational changes induced by ligands in the transmembrane domains are transmitted to the C terminus. We used fluorescence resonance energy transfer (FRET) to examine ligand-induced structural changes in the ... More
Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes.
Authors:Marras SA, Kramer FR, Tyagi S
Journal:Nucleic Acids Res
PubMed ID:12409481
An important consideration in the design of oligonucleotide probes for homogeneous hybridization assays is the efficiency of energy transfer between the fluorophore and quencher used to label the probes. We have determined the efficiency of energy transfer for a large number of combinations of commonly used fluorophores and quenchers. We ... More
Arp2/3 ATP hydrolysis-catalysed branch dissociation is critical for endocytic force generation.
Authors:Martin AC, Welch MD, Drubin DG
Journal:Nat Cell Biol
PubMed ID:16862144
The Arp2/3 complex, which is crucial for actin-based motility, nucleates actin filaments and organizes them into y-branched networks. The Arp2 subunit has been shown to hydrolyse ATP, but the functional importance of Arp2/3 ATP hydrolysis is not known. Here, we analysed an Arp2 mutant in Saccharomyces cerevisiae that is defective ... More