Cholera Toxin Subunit B (Recombinant), Biotin-XX Conjugate
Cholera Toxin Subunit B (Recombinant), Biotin-XX Conjugate
Invitrogen™

Cholera Toxin Subunit B (Recombinant), Biotin-XX Conjugate

Molecular Probes™ cholera toxin conjugates are made from a recombinant version of the B subunit only. This allows us toRead more
Have Questions?
Catalog NumberQuantity
C34779100 μg
Catalog number C34779
Price (MXN)
-
Quantity:
100 μg
Molecular Probes™ cholera toxin conjugates are made from a recombinant version of the B subunit only. This allows us to provide a very high-purity product that is completely free of the toxic A subunit. Cholera toxin B subunit (CT-B) attaches to cells by binding to ganglioside GM1, making it a powerful tool for retrograde labeling of neurons. This tracer has been used in a variety of applications, including tracing of rat forebrain afferents, projections of the parabrachial region, and neurons of the urinary bladder wall. When used in neuronal tracing applications, CT-B is typically introduced by pressure injection or by iontophoretic injection into neural tissue.

Cholera Toxin Subunit B Specifications:
• Label (Ex/Em): Biotin-XX
• At neutral pH, the 11.4 kDa B subunit exists as a 57 kDa pentamer
• Lyophilized product can be dissolved in buffer (e.g., PBS) for use


Cholera Toxin Subunit B for Studying Lipid Rafts
More recently, researchers have found that CT-B can be used as a marker for lipid rafts, which are membrane microdomains enriched in cholesterol and sphingolipids thought to be important in cell signaling. For lipid raft staining, cells are first incubated with fluorescent CT-B. Then, an anti–CT-B antibody is added to crosslink the CT-B in the lipid rafts into distinct patches on the plasma membrane. These patches are easily visualized by fluorescence microscopy. In addition to individual fluorescent CT-B conjugates, we also offer Vybrant™ Lipid Raft Labeling Kits that contain the Alexa Fluor™ 488, Alexa Fluor™ 555, or Alexa Fluor™ 594 dye conjugates of CT-B, an anti–CT-B antibody, and a detailed protocol for labeling and preparing cells for fluorescence microscopy.

Find More CT-B Conjugates
We offer various CT-B conjugates. Review Protein Conjugates—Section 14.7 in the Molecular Probes™ Handbook for more information on these tracers.

For Research Use Only. Not for human or animal therapeutic or diagnostic use.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Label TypeBiotin & Other Haptens
Protein FormRecombinant
Protein SubtypeCholera Toxin
Quantity100 μg
Shipping ConditionRoom Temperature
ConjugateBiotin
FormLyophilized
RecombinantRecombinant
Unit SizeEach
Contents & Storage
Store in freezer (-5 to -30°C).

Frequently asked questions (FAQs)

I injected a fluorescent tracer, but cannot detect it after tissue is fixed and sectioned. What am I doing wrong?

Confirm that the tracer you are using crosslinks to proteins or has a primary amine for fixation-either a hydrazide, lysine fixable dextran, or a protein conjugate.
Use aldehyde-based fixatives to cross link the amines on the tracer.
Inject a larger amount or higher concentration of the tracer. Tracers are generally injected at 1-20% concentrations (10 mg/mL or higher).
Confirm that you are using the correct fluorescent filter for detection. You can perform a spot test by pipetting a small amount of the undiluted stock solution of the tracer onto a slide, then view under the filter you are using on your microscope. This will confirm if the tracer fluorescence can be detected and the fluorescent microscope filter is working properly.
Review tissue fixation and handling procedures to confirm if any reagents or processing procedures could be affecting the tracer.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Do you have a tracer that will only transport retrograde?

Wheat germ agglutinin and cholera toxin conjugates have been used for retrograde tracing. They may have some anterograde tracing in some applications. A selection guide can be found here (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing/protein-conjugates.html).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

How do I know which tracer to choose for my experiment?

Factors to consider are size of tracer, method of delivery (injection, direct application to tissue, etc.), and if the tracer needs to be fixable. Here are some links to details about the various classes of neuronal tracers we offer and how to choose between them:

Neuronal Tracing (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing.html)
Choosing a Tracer (https://www.thermofisher.com/us/en/home/references/molecular-probes-the-handbook/fluorescent-tracers-of-cell-morphology-and-fluid-flow/choosing-a-tracer.html)
Imaging Analysis (http://assets.thermofisher.com/TFS-Assets/BID/Reference-Materials/bioprobes-50-journal.pdf)

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What products do you have for neuronal tracing?

Please check out this web page (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing.html) for details.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (15)

Citations & References
Abstract
Single molecule analysis of serotonin transporter regulation using antagonist-conjugated quantum dots reveals restricted, p38 MAPK-dependent mobilization underlying uptake activation.
Authors:Chang JC, Tomlinson ID, Warnement MR, Ustione A, Carneiro AM, Piston DW, Blakely RD, Rosenthal SJ,
Journal:J Neurosci
PubMed ID:22745492
'The presynaptic serotonin (5-HT) transporter (SERT) is targeted by widely prescribed antidepressant medications. Altered SERT expression or regulation has been implicated in multiple neuropsychiatric disorders, including anxiety, depression and autism. Here, we implement a generalizable strategy that exploits antagonist-conjugated quantum dots (Qdots) to monitor, for the first time, single SERT ... More
The formation of acetylcholine receptor clusters visualized with quantum dots.
Authors:Geng L, Zhang HL, Peng HB,
Journal:BMC Neurosci
PubMed ID:19604411
BACKGROUND: Motor innervation of skeletal muscle leads to the assembly of acetylcholine receptor (AChR) clusters in the postsynaptic membrane at the vertebrate neuromuscular junction (NMJ). Synaptic AChR aggregation, according to the diffusion-mediated trapping hypothesis, involves the establishment of a postsynaptic scaffold that  ... More
Co-localization of amyloid beta and tau pathology in Alzheimer's disease synaptosomes.
Authors:Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, Gylys KH,
Journal:Am J Pathol
PubMed ID:18467692
The amyloid cascade hypothesis proposes that amyloid beta (Abeta) pathology precedes and induces tau pathology, but the neuropathological connection between these two lesions has not been demonstrated. We examined the regional distribution and co-localization of Abeta and phosphorylated tau (p-tau) in synaptic terminals of Alzheimer's disease brains. To quantitatively examine ... More
A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale.
Authors:Bohland JW, Wu C, Barbas H, Bokil H, Bota M, Breiter HC, Cline HT, Doyle JC, Freed PJ, Greenspan RJ, Haber SN, Hawrylycz M, Herrera DG, Hilgetag CC, Huang ZJ, Jones A, Jones EG, Karten HJ, Kleinfeld D, Kötter R, Lester HA, Lin JM, Mensh BD, Mikula S, Panksepp J, Price JL, Safdieh J, Saper CB, Schiff ND, Schmahmann JD, Stillman BW, Svoboda K, Swanson LW, Toga AW, Van Essen DC, Watson JD, Mitra PP,
Journal:PLoS Comput Biol
PubMed ID:19325892
In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale ... More
Cholera toxin B subunit binding does not correlate with GM1 expression: a study using mouse embryonic neural precursor cells.
Authors:Yanagisawa M, Ariga T, Yu RK
Journal:Glycobiology
PubMed ID:16964630
Gangliosides, sialic acid-containing glycosphingolipids, are ubiquitously expressed in all eukaryotic cells and are primarily localized in the plasma membrane. Cholera toxin B subunit (Ctxb), a component of a heat-labile enterotoxin produced by Vibrio cholerae, has been frequently used as a probe to detect GM1 ganglioside because of its high affinity ... More