Dextran, Texas Red™, 10,000 MW, Lysine Fixable
Dextran, Texas Red™, 10,000 MW, Lysine Fixable
Invitrogen™

Dextran, Texas Red™, 10,000 MW, Lysine Fixable

Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of liveRead more
Have Questions?
Catalog NumberQuantity
D186325 mg
Catalog number D1863
Price (MXN)
-
Quantity:
25 mg
Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of live cells, and to report the hydrodynamic properties of the cytoplasmic matrix. The labeled dextran is commonly introduced into the cells via microinjection.

Need a different emission spectrum or longer tracking? View our other mammalian cell tracking products.

Dextran Specifications:

Label (Ex/Em): Texas Red™ (595/615)
Size: 10,000 MW
Charge: Anionic
Fixable: Fixable via Lysine

High Manufacturing Standards of Molecular Probes™ Dextrans
We offer more than 50 fluorescent and biotinylated dextran conjugates in several molecular weight ranges. Dextrans are hydrophilic polysaccharides characterized by their moderate-to-high molecular weight, good water solubility, and low toxicity. They also generally exhibit low immunogeniticy. Dextrans are biologically inert due to their uncommon poly-(α-D-1,6-glucose) linkages, which render them resistant to cleavage by most endogenous cellular glycosidases.

In most cases, Molecular Probes™ fluorescent dextrans are much brighter and have higher negative charge than dextrans available from other sources. Furthermore, we use rigorous methods for removing as much unconjugated dye as practical, and then assay our dextran conjugates by thin-layer chromatography to help ensure the absence of low molecular weight contaminants.

A Wide Selection of Substituents and Molecular Weights
Molecular Probes™ dextrans are conjugated to biotin or a wide variety of fluorophores, including seven of our Alexa Fluor™ dyes (Molecular Probes dextran conjugates–Table 14.4) and are available in these nominal molecular weights (MW): 3,000; 10,000; 40,000; 70,000; 500,000; and 2,000,000 daltons.

Dextran Net Charge and Fixability
We employ succinimidyl coupling of our dyes to the dextran molecule, which, in most cases, results in a neutral or anionic dextran. The reaction used to produce the Rhodamine Green™ and Alexa Fluor 488 dextrans results in the final product being neutral, anionic, or cationic. The Alexa Fluor, Cascade Blue, lucifer yellow, fluorescein, and Oregon Green dextrans are intrinsically anionic, whereas most of the dextrans labeled with the zwitterionic rhodamine B, tetramethylrhodamine, and Texas Red™ dyes are essentially neutral. To produce more highly anionic dextrans, we have developed a proprietary procedure for adding negatively charged groups to the dextran carriers; these products are designated “polyanionic” dextrans.

Some applications require that the dextran tracer be treated with formaldehyde or glutaraldehyde for subsequent analysis. For these applications, we offer “lysine-fixable” versions of most of our dextran conjugates of fluorophores or biotin. These dextrans have covalently bound lysine residues that permit dextran tracers to be conjugated to surrounding biomolecules by aldehyde-mediated fixation for subsequent detection by immunohistochemical and ultrastructural techniques. We have also shown that all of our 10,000 MW Alexa Fluor dextran conjugates can be fixed with aldehyde-based fixatives.

Key Applications Using Labeled Dextrans
There are a multitude of citations describing the use of labeled dextrans. Some of the most common uses include:

Neuronal tracing (anterograde and retrograde) in live cells
Cell lineage tracing in live cells
Neuroanatomical tracing
Examining intercellular communications (e.g., in gap junctions, during wound healing, and during embryonic development)
Investigating vascular permeability and blood–brain barrier integrity
Tracking endocytosis
Monitoring acidification (some dextran–dye conjugates are pH-sensitive)
Studying the hydrodynamic properties of the cytoplasmic matrix

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Label or DyeClassic Dyes
Product TypeDextran
Quantity25 mg
Shipping ConditionRoom Temperature
Excitation/Emission595/615 nm
Product LineTexas Red
Unit SizeEach
Contents & Storage
Store in freezer (-5 to -30°C) and protect from light.

Citations & References (29)

Citations & References
Abstract
GPCR signaling is required for blood-brain barrier formation in drosophila.
Authors:Schwabe T, Bainton RJ, Fetter RD, Heberlein U, Gaul U,
Journal:Cell
PubMed ID:16213218
'The blood-brain barrier of Drosophila is established by surface glia, which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions. The mechanisms underlying the formation of this barrier remain obscure. Here, we show that the G protein-coupled receptor (GPCR) Moody, the G protein ... More
Versatile, high-resolution anterograde labeling of vagal efferent projections with dextran amines.
Authors:Walter GC, Phillips RJ, Baronowsky EA, Powley TL,
Journal:J Neurosci Methods
PubMed ID:19056424
'None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, ... More
Lysine-fixable dye tracing of exocytosis shows F-actin coating is a step that follows granule fusion in pancreatic acinar cells.
Authors:Turvey MR, Thorn P
Journal:Pflugers Arch
PubMed ID:15103465
'Exocytosis, the fusion of a vesicle with the plasma membrane, involves a complex cascade of cellular events. We set out to develop a method to identify changes in the distribution of proteins associated with exocytotic events in secretory epithelial cells. Our model system, the mouse pancreatic acinar cell, contains many ... More
A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages.
Authors:Araki N, Johnson MT, Swanson JA
Journal:J Cell Biol
PubMed ID:8947549
'Phosphoinositide 3-kinase (PI 3-kinase) has been implicated in growth factor signal transduction and vesicular membrane traffic. It is thought to mediate the earliest steps leading from ligation of cell surface receptors to increased cell surface ruffling. We show here that inhibitors of PI 3-kinase inhibit endocytosis in macrophages, not by ... More
Sorting of membrane and fluid at the apical pole of polarized Madin-Darby canine kidney cells.
Authors:Leung SM, Ruiz WG, Apodaca G
Journal:Mol Biol Cell
PubMed ID:10848634
'When fluid-phase markers are internalized from opposite poles of polarized Madin-Darby canine kidney cells, they accumulate in distinct apical and basolateral early endosomes before meeting in late endosomes. Recent evidence suggests that significant mixing of apically and basolaterally internalized membrane proteins occurs in specialized apical endosomal compartments, including the common ... More