Células competentes MAX Efficiency™ DH10B
Células competentes MAX Efficiency™ DH10B
Invitrogen™

Células competentes MAX Efficiency™ DH10B

Las células competentes MAX Efficiency DH10B son células de E. coli altamente eficaces que resultan perfectas para la mayoría deMás información
Have Questions?
Número de catálogoCantidad
182970105 x 200 μl
Número de catálogo 18297010
Precio (MXN)
-
Cantidad:
5 x 200 μl
Las células competentes MAX Efficiency DH10B son células de E. coli altamente eficaces que resultan perfectas para la mayoría de las aplicaciones. Las células E. coli DH10B están disponibles tanto en formato electrocompetente como químicamente competente. Su alta eficacia de transformación hace que sean ideales para la generación de ADN complementario o bibliotecas genómicas. Se ha observado una transformación de alta eficacia en plásmidos de 150 kb de tamaño. El versátil genotipo DH10B tiene las siguientes características:

lacZ para la detección azul/blanca de clones recombinantes
• Eliminación de los sistemas de restricción mcrA, mcrBC, mrr y hsdRMS para permitir la construcción de más bibliotecas genómicas representativas
• Mutación A1 para aumentar la producción y la cantidad de plásmidos
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Resistencia bacteriana a los antibióticosYes (Streptomycin)
Tramado azul/blanco
Clonación de ADN metilado
Clonación de ADN inestableNo es adecuado para clonar ADN inestable
Contiene el episoma F'Carece de episoma F'
Compatibilidad de alto rendimientoNo compatible con alto rendimiento (manual)
Mejora la calidad de los plásmidos
Preparación de ADN no metiladoNo es adecuado para preparar ADN no metilado
Línea de productosDH10B, MAX Efficiency
Tipo de productoCélula competente
Cantidad5 x 200 μl
Reduce la recombinación
Condiciones de envíoHielo seco
Resistente al fago T1 (tonA)No
Nivel de eficiencia de transformaciónAlta eficacia (> 10^9 ufg⁄µ g)
FormatoTubo
EspecieE. coli
Unit SizeEach
Contenido y almacenamiento
Contiene:
• Acerca de las células competentes MAX Efficiency DH10B: 5 viales, 200 µl cada uno (total de 1 ml)
• ADN pUC19 (0,01 µg/ml): 1 vial, 100 µl
• Medio S.O.C.: 2 frascos, 6 ml cada uno

Almacenar las células competentes a -80 °C. Almacene pUC19 DNA a -20 °C. Almacenar el medio S.O.C. a 4 °C o a temperatura ambiente.

Preguntas frecuentes

How do you recommend that I prepare my DNA for successful electroporation of E. coli?

For best results, DNA used in electroporation must have a very low ionic strength and a high resistance. A high-salt DNA sample may be purified by either ethanol precipitation or dialysis.

The following suggested protocols are for ligation reactions of 20ul. The volumes may be adjusted to suit the amount being prepared.

Purifying DNA by Precipitation: Add 5 to 10 ug of tRNA to a 20ul ligation reaction. Adjust the solution to 2.5 M in ammonium acetate using a 7.5 M ammonium acetate stock solution. Mix well. Add two volumes of 100 % ethanol. Centrifuge at 12,000 x g for 15 min at 4C. Remove the supernatant with a micropipet. Wash the pellet with 60ul of 70% ethanol. Centrifuge at 12,000 x g for 15 min at room temperature. Remove the supernatant with a micropipet. Air dry the pellet. Resuspend the DNA in 0.5X TE buffer [5 mM Tris-HCl, 0.5 mM EDTA (pH 7.5)] to a concentration of 10 ng/ul of DNA. Use 1 ul per transformation of 20 ul of cell suspension.

Purifying DNA by Microdialysis: Float a Millipore filter, type VS 0.025 um, on a pool of 0.5X TE buffer (or 10% glycerol) in a small plastic container. Place 20ul of the DNA solution as a drop on top of the filter. Incubate at room temperature for several hours. Withdraw the DNA drop from the filter and place it in a polypropylene microcentrifuge tube. Use 1ul of this DNA for each electrotransformation reaction.

You offer competent cells in Subcloning Efficiency, Library Efficiency and MAX Efficiency. How do these differ?

There are a few exceptions, but in general the difference is in guaranteed transformation efficiency as follows:

Subcloning Efficiency cells are guaranteed to produce at least 1.0 x 10E6 transformants per µg of transformed pUC19 or pUC18 supercoiled plasmid
Library Efficiency cells are guaranteed to produce at least 1.0 x 10E8 transformants per µg pUC19 or pUC18 DNA
MAX Efficiency cells are guaranteed to produce at least 1.0 x 10E9 transformants per µg pUC19 or pUC18 DNA

Does the methylation status of DNA affect its ability to be cloned?

Yes. Bacterial host cells will often degrade incoming DNA that has a methylation pattern that is "foreign" relative to that of the cell. Several host strains have been modified to accept mammalian methylation patterns. The modified markers include mcrA, mcrBC, and mrr. Also, endogenous (b-type) restriction endonucleases can be problematic. Modifications of the host to be rK- or rB- are necessary and include hsdR17(AK-, MK+), hsdR17(rK-, mK-), hsdS20(rB-, rB-) or hsdRMS. Strains with the hsdR17(rK-, mK+) mutation lack K-type restriction endonuclease, but contain K-type methylase. DNA prepared from hosts that are rK- mK- is unmethylated and will transform with lower efficiency in rK+ hosts.

TOP10, DH10B, and OmniMAX2-T1 cells contain the mcr, mrr, and hsdRMS mutations. Mach1 and standard DH5? strains only have the hsdR17(rK- mK+) mutation and are not recommended for cloning eukaryotic genomic DNA.

When should DMSO, formamide, glycerol and other cosolvents be used in PCR?

Cosolvents may be used when there is a failure of amplification, either because the template contains stable hairpin-loops or the region of amplification is GC-rich. Keep in mind that all of these cosolvents have the effect of lowering enzyme activity, which will decrease amplification yield. For more information see P Landre et al (1995). The use of co-solvents to enhance amplification by the polymerase chain reaction. In: PCR Strategies, edited by MA Innis, DH Gelfand, JJ Sninsky. Academic Press, San Diego, CA, pp. 3-16.

Additionally, when amplifying very long PCR fragments (greater than 5 kb) the use of cosolvents is often recommended to help compensate for the increased melting temperature of these fragments.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

How can AmpliTaq DNA Polymerase be inactivated after PCR?

There are several approaches that can be taken to inactivate the AmpliTaq DNA Polymerase after PCR.

(1) Because AmpliTaq DNA Polymerase is thermostable, it is necessary to heat it to high temperatures in order for it to be inactivated. Typically, a 99-100 degrees C for 10 min is sufficient.

(2) Raising the EDTA concentration to 10 mM will chelate any free Mg2+. Mg2+ is necessary for enzyme activity. By removing the Mg2+ the enzyme will no longer exhibit enzyme activity.

(3) Phenol-chloroform extraction of the PCR product and ethanol precipitation will also inactivate AmpliTaq DNA Polymerase.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

Citations & References (4)

Citations & References
Abstract
Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins.
Authors: Frey Norbert; Olson Eric N;
Journal:J Biol Chem
PubMed ID:11842093
'The Z-disc is a highly specialized multiprotein complex of striated muscles that serves as the interface of the sarcomere and the cytoskeleton. In addition to its role in muscle contraction, its juxtaposition to the plasma membrane suggests additional functions of the Z-disc in sensing and transmitting external and internal signals. ... More
Two distinct pseudomonas effector proteins interact with the pto kinase and activate plant immunity.
Authors: Kim Young Jin; Lin Nai Chun; Martin Gregory B;
Journal:Cell
PubMed ID:12062102
The Pto serine/threonine kinase of tomato confers resistance to speck disease by recognizing strains of Pseudomonas syringae that express the protein AvrPto. Pto and AvrPto physically interact, and this interaction is required for activation of host resistance. We identified a second Pseudomonas protein, AvrPtoB, that interacts specifically with Pto and ... More
MRK, a mixed lineage kinase-related molecule that plays a role in gamma-radiation-induced cell cycle arrest.
Authors: Gross Eleanore A; Callow Marinella G; Waldbaum Linda; Thomas Suzanne; Ruggieri Rosamaria;
Journal:J Biol Chem
PubMed ID:11836244
Mitogen-activated protein (MAP) kinase pathways are three-kinase modules that mediate diverse cellular processes and have been highly conserved among eukaryotes. By using a functional complementation screen in yeast, we have identified a human MAP kinase kinase kinase (MAPKKK) that shares homology with members of the mixed lineage kinase (MLK) family ... More
Haemophilus influenzae type b strain A2 has multiple sialyltransferases involved in lipooligosaccharide sialylation.
Authors: Jones Paul A; Samuels Nicole M; Phillips Nancy J; Munson Robert S Jr; Bozue Joel A; Arseneau Julie A; Nichols Wade A; Zaleski Anthony; Gibson Bradford W; Apicella Michael A;
Journal:J Biol Chem
PubMed ID:11842084
The lipooligosaccharide (LOS) of Haemophilus influenzae contains sialylated glycoforms, and a sialyltransferase, Lic3A, has been previously identified. We report evidence for two additional sialyltransferases, SiaA, and LsgB, that affect N-acetyllactosamine containing glycoforms. Mutations in genes we have designated siaA and lsgB affected only the sialylated glycoforms containing N-acetylhexosamine. A mutation ... More