Kit de purificación de ARNm Dynabeads™ (para purificación de ARNm de preparaciones de ARN total)
Kit de purificación de ARNm Dynabeads™ (para purificación de ARNm de preparaciones de ARN total)
Invitrogen™

Kit de purificación de ARNm Dynabeads™ (para purificación de ARNm de preparaciones de ARN total)

El kit de purificación de ARNm Dynabeads™ aísla rápidamente el transcriptoma del ARN mensajero (ARNm) en normalmente 15 minutos yMás información
Have Questions?
Número de catálogoCantidad
610062 mL
Número de catálogo 61006
Precio (MXN)
-
Cantidad:
2 mL
El kit de purificación de ARNm Dynabeads™ aísla rápidamente el transcriptoma del ARN mensajero (ARNm) en normalmente 15 minutos y genera un ARNm puro e intacto. El kit está diseñado específicamente para buscar, capturar y purificar moléculas de ARNm a partir de preparaciones de ARN total. Ventajas de utilizar el kit de purificación de ARNm Dynabeads™:

• Obtenga ARNm puro en normalmente 15 minutos
• Recupere y enriquezca el transcriptoma de manera eficaz
• Prepare ARNm que es adecuado para casi cualquier aplicación secuencia abajo

Aislamiento puro y rápido de ARNm
El kit de purificación de ARNm Dynabeads™ contiene gránulos magnéticos para el aislamiento del transcriptoma de ARNm de cualquier preparación de ARN eucariota total (consulte la figura). Los gránulos magnéticos Dynabeads™ son de tamaño uniforme y muy móviles en la solución (consulte la figura). Esto permite al gránulo capturar la superficie para interactuar de manera rápida y continua con toda la muestra de ARN total durante la fase de captura de ARNm. El ARN ribosómico y pequeñas moléculas de ARN (ARN de transferencia, micro ARN, pequeños ARN nucleolares y pequeños ARN citoplásmicos) no se unen a los gránulos y se descartan. Solo se capturan especies de ARN poliadenilado (ARNm) lo que permite obtener resultados más transparentes y sensibles (consulte la figura). En solo 15 minutos, se aísla ARNm puro y se prepara para su uso en aplicaciones secuencia abajo.

Un procedimiento de enriquecimiento sencillo
El micro kit Dynabeads™ mRNA DIRECT utiliza un principio de purificación por afinidad resistente para el enriquecimiento de ARNm poliadenilado. Los gránulos superparamagnéticos Dynabeads™, acoplados a oligo(dT)25, se equilibran en primer lugar con el tampón de unión y, a continuación, se mezclan con el ARN total purificado. A continuación, los gránulos se lavan para eliminar especies de ARN contaminantes y se eluye el ARNm en tan solo 5 μl de 10 mM de Tris-HCl. Todo el proceso se simplifica mediante el uso de un imán de neodimio (se adquiere por separado), que permite la inmovilización rápida y eficaz de los gránulos magnéticos durante cambios de tampón. El ARN es adecuado para todas las aplicaciones moleculares secuencia abajo, entre las que se incluyen:

• Clonación de genes
• Síntesis de ADNc y construcción de bibliotecas de ADNc
• RT-PCR, cuantitativo de RT-PCR
• RPA (Ensayo de protección de ribonucleasa)
• Hibridación sustractiva
• Hibridación dot/slot
• Extensión de cebadores
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Volumen de elución5 to 20 μL
Tipo de producto finalARNm
Para utilizar con (aplicación)PCR de transcriptasa inversa (RT-PCR)
Características ecológicasBeads may be reused for multiple extractions
Tiempo de purificación10 min.
Cantidad2 mL
Condiciones de envíoTemperatura ambiente
Cantidad de material de partida≤100 μL
Producción2 μg mRNA per 200 μL of beads (Binding capacity)
Isolation TechnologyGránulo magnético
Tipo de muestraARN total
Unit SizeEach
Contenido y almacenamiento
2-8 °C
2 ml gránulos + tampones

Preguntas frecuentes

I am getting DNA contamination after mRNA isolation using Dynabeads magnetic beads. Why is this?

There are several reasons why DNA contamination may occur:

- Incomplete DNA shearing.
- Incomplete removal of sample lysate after the hybridization step.
- Insufficient washing and/or removal of wash buffers.
- The ratio of sample to beads was too high.

My Dynabeads magnetic beads are not pelleting well with the magnet. Do you have any suggestions for me?

Please review the following possibilities for why your Dynabeads magnetic beads are not pelleting:

- The solution is too viscous.
- The beads have formed aggregates because of protein-protein interaction.

Try these suggestions: - Increase separation time (leave tub on magnet for 2-5 minutes)
- Add DNase I to the lysate (~0.01 mg/mL)
- Increase the Tween 20 concentration to ~0.05% of the binding and/or washing buffer.
- Add up to 20 mM beta-merecaptoethanol to the binding and/or wash buffers.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

I have a long double-stranded DNA fragment I would like to isolate. What product do you recommend?

For biotin-labeled DNA that is less than 1 kb, we recommend you use Dynabeads M270 Streptavidin (Cat. No. 65305) and MyOne C1 magnetic beads (Cat. No. 65001). We recommend our Dynabeads KilobaseBINDER Kit (Cat. No. 60101), which is designed to immobilize long (>1 kb) double-stranded DNA molecules. The KilobaseBINDER reagent consists of M-280 Streptavidin-coupled Dynabeads magnetic beads along with a patented immobilization activator in the binding solution to bind to long, biotinylated DNA molecules for isolation. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/immobilisation-of-long-biotinylated-dna-fragments.html) for more information in regards to long biotinylated DNA fragment isolation.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can I use Dynabeads magnetic beads to isolate single-stranded DNA templates?

Yes, Dynabeads magnetic beads can be used to isolate single-stranded DNA. Streptavidin Dynabeads magnetic beads can be used to target biotinylated DNA fragments, followed by denaturation of the double-stranded DNA and removal of the non-biotinylated strand. The streptavidin-coupled Dynabeads magnetic beads will not inhibit any enzymatic activity. This enables further handling and manipulation of the bead-bound DNA directly on the solid phase. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/preparing-single-stranded-dna-templates.html) for more information in regards to single-stranded DNA capture.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What is the magnetic susceptibility for Dynabeads magnetic beads?

Magnetic susceptibility is a measure of how quickly the beads will migrate to the magnet. This will depend on the iron content and the character of the iron oxide. The magnetic susceptibility given for the Dynabeads magnetic beads is the mass susceptibility, given either as cgs units/g or m^3/kg (the latter being an SI unit). For ferri- and ferromagnetic substances, the magnetic mass susceptibility is dependent upon the magnetic field strength (H), as the magnetization of such substances is not a linear function of H but approaches a saturation value with increasing field. For that reason, the magnetic mass susceptibility of the Dynabeads magnetic beads is determined by a standardized procedure under fixed conditions. The magnetic mass susceptibility given in our catalog is thus the SI unit. Conversion from Gaussian (cgs, emu) units into SI units for magnetic mass susceptibility is achieved by multiplying the Gaussian factor (emu/g or cgs/g) by 4 pi x 10^-3. The resulting unit is also called the rationalized magnetic mass susceptibility, which should be distinguished from the (SI) dimensionless magnetic susceptibility unit. In general, magnetic mass susceptibility is a measure of the force (Fz) influencing an object positioned in a nonhomogenous magnetic field. The magnetic mass susceptibility of the Dynabeads magnetic beads is measured by weighing a sample, and then subjecting the sample to a magnetic field of known strength. The weight (F1) is then measured, and compared to the weight of the sample when the magnetic field is turned off (F0). The susceptibility is then calculated as K x 10^-3 = [(F1-F0) x m x 0.335 x 10^6], where K is the mass susceptibility of the sample of mass m. The susceptibility is then converted to SI units.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Citations & References (5)

Citations & References
Abstract
Identification of a novel glucose transporter-like protein-GLUT-12.
Authors:Rogers S, Macheda ML, Docherty SE, Carty MD, Henderson MA, Soeller WC, Gibbs EM, James DE, Best JD
Journal:Am J Physiol Endocrinol Metab
PubMed ID:11832379
'Facilitative glucose transporters exhibit variable hexose affinity and tissue-specific expression. These characteristics contribute to specialized metabolic properties of cells. Here we describe the characterization of a novel glucose transporter-like molecule, GLUT-12. GLUT-12 was identified in MCF-7 breast cancer cells by homology to the insulin-regulatable glucose transporter GLUT-4. The GLUT-12 cDNA ... More
Transcriptome analysis by strand-specific sequencing of complementary DNA.
Authors:Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A
Journal:Nucleic Acids Res
PubMed ID:19620212
High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about ... More
Transcriptome sequencing to detect gene fusions in cancer.
Authors:Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM
Journal:Nature
PubMed ID:19136943
Recurrent gene fusions, typically associated with haematological malignancies and rare bone and soft-tissue tumours, have recently been described in common solid tumours. Here we use an integrative analysis of high-throughput long- and short-read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept, we successfully ... More
Widespread occurrence of antisense transcription in the human genome.
Authors:Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, Diber A, Biton S, Tamir Y, Khosravi R, Nemzer S, Pinner E, Walach S, Bernstein J, Savitsky K, Rotman G
Journal:Nat Biotechnol
PubMed ID:12640466
An increasing number of eukaryotic genes are being found to have naturally occurring antisense transcripts. Here we study the extent of antisense transcription in the human genome by analyzing the public databases of expressed sequences using a set of computational tools designed to identify sense-antisense transcriptional units on opposite DNA ... More
Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept.
Authors:Helmkampf M, Bruchhaus I, Hausdorf B
Journal:Proc Biol Sci
PubMed ID:18495619
Based on embryological and morphological evidence, Lophophorata was long considered to be the sister or paraphyletic stem group of Deuterostomia. By contrast, molecular data have consistently indicated that the three lophophorate lineages, Ectoprocta, Brachiopoda and Phoronida, are more closely related to trochozoans (annelids, molluscs and related groups) than to deuterostomes. ... More