Alexa Fluor™ 594 Biocytin, Sodium Salt (Biocytin Alexa Fluor™ 594)
Alexa Fluor™ 594 Biocytin, Sodium Salt (Biocytin Alexa Fluor™ 594)
Invitrogen™

Alexa Fluor™ 594 Biocytin, Sodium Salt (Biocytin Alexa Fluor™ 594)

El marcador polar biocitina Alexa Fluor™ 594, fijable e impermeable a las células, combina el fluoróforo Alexa Fluor™ 594 rojoMás información
Have Questions?
Número de catálogoCantidad
A12922250 μg
Número de catálogo A12922
Precio (MXN)
-
Cantidad:
250 μg
El marcador polar biocitina Alexa Fluor™ 594, fijable e impermeable a las células, combina el fluoróforo Alexa Fluor™ 594 rojo fluorescente con biotina y una amina primaria fijable al aldehído. Los trazadores polares se usan comúnmente para investigar la fusión célula-célula y célula-liposoma, así como la permeabilidad de la membrana y el transporte a través de uniones de comunicación o captación celular durante la pinocitosis. Este marcador soluble en agua puede introducirse en las células mediante la fijación de parches de células enteras, iontoforesis, lisis osmótica de vesículas pinocíticas o métodos comparables. La biotina permite la detección y posterior amplificación con estreptavidinas modificadas por enzimas, incluidas la peroxidasa de rábano (HRP) y la fosfatasa alcalina (AP), que pueden usarse con las tecnologías TSA y ELF™, respectivamente.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Tipo de etiquetaColorantes Alexa Fluor
Línea de productosAlexa Fluor
Tipo de productoBiocitina 594
Cantidad250 μg
Tipo de reactivoBiocitinas
Condiciones de envíoTemperatura ambiente
Unit SizeEach
Contenido y almacenamiento
Almacenar a temperatura ambiente y proteger de la luz.

Preguntas frecuentes

I injected a fluorescent tracer, but cannot detect it after tissue is fixed and sectioned. What am I doing wrong?

Confirm that the tracer you are using crosslinks to proteins or has a primary amine for fixation-either a hydrazide, lysine fixable dextran, or a protein conjugate.
Use aldehyde-based fixatives to cross link the amines on the tracer.
Inject a larger amount or higher concentration of the tracer. Tracers are generally injected at 1-20% concentrations (10 mg/mL or higher).
Confirm that you are using the correct fluorescent filter for detection. You can perform a spot test by pipetting a small amount of the undiluted stock solution of the tracer onto a slide, then view under the filter you are using on your microscope. This will confirm if the tracer fluorescence can be detected and the fluorescent microscope filter is working properly.
Review tissue fixation and handling procedures to confirm if any reagents or processing procedures could be affecting the tracer.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I have labeled my neurons with an Alexa Fluor conjugated biocytin to look at transport but I wanted to examine only retrograde transport and biocytin appears to be moving retrograde and anterograde. What should I do?

Observing both types of transport is typical for biocytin. The conjugated cholera toxin subunit B products have been observed to travel only retrogradely.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Do you have a neuronal tracer similar to Lucifer Yellow but in another fluorescent color?

Lucifer Yellow CH is a hydrazide, so any of our Alexa Fluor or fluorescent hydrazides could potentially be used. A listing of them can be found here. (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing/hydrazides-biocytins.html#prd)

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (11)

Citations & References
Abstract
OLIG gene targeting in human pluripotent stem cells for motor neuron and oligodendrocyte differentiation.
Authors:Liu Y, Jiang P, Deng W,
Journal:Nat Protoc
PubMed ID:21527921
Pluripotent stem cells can be genetically labeled to facilitate differentiation studies. In this paper, we describe a gene-targeting protocol to knock in a GFP cassette into key gene loci in human pluripotent stem cells (hPSCs), and then use the genetically tagged hPSCs to guide in vitro differentiation, immunocytochemical and electrophysiological ... More
Panglial gap junctional communication is essential for maintenance of myelin in the CNS.
Authors:Tress O, Maglione M, May D, Pivneva T, Richter N, Seyfarth J, Binder S, Zlomuzica A, Seifert G, Theis M, Dere E, Kettenmann H, Willecke K,
Journal:J Neurosci
PubMed ID:22649229
'In this study, we have investigated the contribution of oligodendrocytic connexin47 (Cx47) and astrocytic Cx30 to panglial gap junctional networks as well as myelin maintenance and function by deletion of both connexin coding DNAs in mice. Biocytin injections revealed complete disruption of oligodendrocyte-to-astrocyte coupling in the white matter of 10- ... More
Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors.
Authors:Lidke DS, Lidke KA, Rieger B, Jovin TM, Arndt-Jovin DJ
Journal:J Cell Biol
PubMed ID:16103229
'ErbB1 receptors situated on cellular filopodia undergo systematic retrograde transport after binding of the epidermal growth factor (EGF) and activation of the receptor tyrosine kinase. Specific inhibitors of the erbB1 receptor tyrosine kinase as well as cytochalasin D, a disruptor of the actin cytoskeleton, abolish transport but not free diffusion ... More
Layer-specific experience-dependent rewiring of thalamocortical circuits.
Authors:Wang L, Kloc M, Gu Y, Ge S, Maffei A,
Journal:J Neurosci
PubMed ID:23447625
Thalamocortical circuits are central to sensory and cognitive processing. Recent work suggests that the thalamocortical inputs onto L4 and L6, the main input layers of neocortex, are activated differently by visual stimulation. Whether these differences depend on layer-specific organization of thalamocortical circuits; or on specific properties of synapses onto receiving ... More
Complex autonomous firing patterns of striatal low-threshold spike interneurons.
Authors:Beatty JA, Sullivan MA, Morikawa H, Wilson CJ,
Journal:J Neurophysiol
PubMed ID:22572945
During sensorimotor learning, tonically active neurons (TANs) in the striatum acquire bursts and pauses in their firing based on the salience of the stimulus. Striatal cholinergic interneurons display tonic intrinsic firing, even in the absence of synaptic input, that resembles TAN activity seen in vivo. However, whether there are other ... More