LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit
LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit

LanthaScreen™ TR-FRET Androgen Receptor Coactivator Assay Kit

™ El kit de ensayo del coactivador del receptor de andrógenos LanthaScreen TR-FRET proporciona un método sensible y robusto paraMás información
Have Questions?
Número de catálogoCantidad
A15878800 ensayos de 20 μL
Número de catálogo A15878
Precio (MXN)
-
Cantidad:
800 ensayos de 20 μL
™ El kit de ensayo del coactivador del receptor de andrógenos LanthaScreen TR-FRET proporciona un método sensible y robusto para la detección de alto rendimiento de los ligandos potenciales del receptor de andrógenos (AR) como agonistas del reclutamiento del coactivador o antagonistas del reclutamiento del coactivador agonista-dependiente. Tanto en el modo agonista como en el antagonista, el ensayo homogéneo de mezcla y lectura utiliza un dominio de unión al ligando de AR de rata (AR-LBD) marcado con hexahistidina y glutatión-S-transferasa (GST) (también disponible por separado), un anticuerpo anti-GST marcado con terbio (Tb) y un péptido coactivador marcado con fluoresceína.

Modo agonista
Cuando el ensayo de coactivador del receptor de andrógenos LanthaScreen TR-FRET se ejecuta en modo agonista (para identificar compuestos agonistas), se añade AR-LBD a los compuestos de ensayo de ligando, seguido de la adición de una mezcla de péptido coactivador de fluoresceína y anticuerpo Tb-anti-GST. Después de la incubación a temperatura ambiente, se calcula la relación de emisión TR-FRET 520:495 nm y se utiliza para determinar la EC50 a partir de una curva de respuesta de dosis del compuesto. Este ligando EC50 es un valor compuesto que representa la cantidad de ligando necesaria para unirse al receptor, efectuar un cambio conformacional y reclutar péptido coactivador (ver figura).

Modo antagonista
Cuando el ensayo de coactivador del receptor de andrógenos LanthaScreen TR-FRET se ejecuta en modo antagonista (para identificar compuestos antagonistas), se agrega AR-LBD a los compuestos de prueba de ligando, seguido de la adición de una mezcla de agonista DHT, péptido coactivador de fluoresceína y anticuerpo Tb-anti-GST. La concentración de agonista DHT utilizada en este modo es la concentración de EC80 determinada por la primera ejecución del ensayo en modo agonista. En la figura siguiente se muestra un ejemplo de los datos producidos en el modo antagonista.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Para utilizar con (aplicación)Ensayo de interacción de cofactores, ensayo de receptores nucleares
LigandoAR
No. of Assays800 x 20 μL assays
Tipo de productoKit de ensayo de coactivadores del receptor de andrógenos TR-FRET
Cantidad800 ensayos de 20 μL
Línea de productosLanthaScreen
Unit SizeEach
Contenido y almacenamiento
1 tubo de proteína recombinante de dominio de unión a ligando AR (almacenar a una temperatura entre -68 y -85 °C)
1 tubo de péptido (almacenar a una temperatura entre -5 y -30 °C)
2 frascos de tampón TR-FRET (almacenar a una temperatura entre -5 y -30 °C)
1 tubo de TB-Anti-GST Ab (almacenar a una temperatura ente -5 y -30 °C)
1 tubo de DTT (almacenar a una temperatura entre -5 y -30 °C)

Preguntas frecuentes

I'm using the TaqMan hPSC Scorecard Panel. How do I load the samples onto a 384-well plate if I only have a 16-channel pipette?

The tips of most 16-channel pipettes will align with every well in each column of the plate. However, if your cDNA reactions were set up in 8 wells of a 96-well plate or in 8-well PCR strips, additional sample will be required to compensate for the dead volume. When you insert 2 tips of the 16-channel pipette into 1 well, the tips can't reach the bottom of the well, resulting in a need for additional dead volume.

Find additional tips, troubleshooting help, and resources within our Real-Time PCR and Digital PCR Applications Support Center

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.