Reactivo CellROX™ Deep Red para la detección de estrés oxidativo
Reactivo CellROX™ Deep Red para la detección de estrés oxidativo
Invitrogen™

Reactivo CellROX™ Deep Red para la detección de estrés oxidativo

El reactivo rojo oscuro CellROX™ es una nueva sonda fluorogénica para medir el estrés oxidativo en análisis de imágenes deMás información
Have Questions?
Número de catálogoCantidad
C10422250 μl
Número de catálogo C10422
Precio (MXN)
-
Cantidad:
250 μl
El reactivo rojo oscuro CellROX™ es una nueva sonda fluorogénica para medir el estrés oxidativo en análisis de imágenes de células fijas y vivas. Tiene unos niveles máximos de absorción/emisión de ∼644/665 nm. Este colorante que penetra en la célula no es fluorescente cuando se encuentra en estado reducido, pero presenta una fluorescencia brillante tras la oxidación por parte de especies reactivas de oxígeno (ROS).

Características del reactivo CellROX™ Deep Red:

• Sonda optimizada para detección del estrés oxidativo de las células
• Protocolo sencillo que se puede utilizar con proteína verde fluorescente (GFP) y otros colorantes de células vivas
• Compatible tanto con la adquisición de imágenes de fluorescencia de células vivas como con los métodos de fijación basados en formaldehído

Detalles del sustrato
El reactivo CellROX™ Deep Red es un nuevo colorante que penetra en la célula con unos niveles máximos de absorción/emisión de ∼644/665 nm. El reactivo CellROX™ Deep Red no es fluorescente cuando se encuentra en estado reducido y presenta fluorescencia tras la oxidación por especies reactivas de oxígeno. Tiene un nivel de emisión máxima ∼665 nm que se mide con la captura de imágenes fluorescentes, captura de imágenes de alto contenido, lectores de placas fluorescentes o citometría de flujo.

Detección del estrés oxidativo con reactivo CellROX™ Deep Red
El estrés oxidativo es el resultado de un desequilibrio entre la producción de especies reactivas de oxígeno (ROS) y la capacidad de las células para eliminarlas. Las ROS juegan un papel importante en la progresión de varias enfermedades, incluida la inflamación, la aterosclerosis, el envejecimiento y los trastornos degenerativos relacionados con la edad. El reactivo CellROX™ Deep Red detecta el estrés oxidativo en células, ya que reacciona con las ROS para convertirse en brillante fluorescente.

Protocolo sencillo y sólido
El protocolo para utilizar este reactivo es sencillo y la señal del reactivo fluorescente rojo oscuro brillante es compatible con la proteína verde fluorescente (GFP) y otros colorantes de células vivas. Por tanto, resulta útil en ensayos multiplex de fluorescencia para medir una serie de fenómenos celulares, incluidos los parámetros relacionados con la citotoxicidad y la muerte celular (consulte la figura 4 a continuación). Además, a diferencia de la mayoría de sensores de ROS, como el diacetato de 2',7'-diclorodihidrofluoresceína (H2DCFDA), la señal del reactivo rojo oscuro CellROX™ se conserva después de la fijación con formaldehído. Esto ofrece flexibilidad para los ensayos y un flujo de trabajo mejorado en comparación con los colorantes clásicos para la detección de ROS.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
ColorRojo lejano
Concentración2.5 mM stabilized solution in DMSO
Para utilizar con (equipo)Imaging, HCS, Cytometer
FormatoLíquido
Cantidad250 μl
Método de detecciónLive Cell Imaging
Excitation/Emission644/665 nm
IndicatorOxidative stress
Línea de productosCellROX
Unit SizeEach
Contenido y almacenamiento
Store at ≤–20°C. Protect from light and desiccate.

Preguntas frecuentes

I want to assay cells for reactive oxygen species using carboxy-H2DCFDA, but I want to do so with a plate reader instead of microscope. Will it work?

It has been done. The problem is that plate readers are less sensitive than microscopes, with far less signal-to-background difference. It is worth trying, but first optimize concentrations and loading times with control cells, use a plate with little to no autofluorescence, and possibly optimize the gain setting in order to get the best signal possible. But don't expect the same sensitivity, even with optimization.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I have GFP-transfected cells and need to label for reactive oxygen species. Can I use H2DCFDA?

This is not recommended as the two dyes overlap in the emission wavelength. There are other ROS reagents available in different wavelengths, such as CellROX Deep Red, which emits in the far-red range (665 nm), or dihydroethidium, which is emits in the visible red range (620 nm).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I need a formaldehyde-fixable reactive oxygen species detection assay. Is H2 DCFDA fixable?

H2DCFDA and similar derivatives are not fixable. The same goes for dihydroethidium and dihydrorhodamine. However, CellROX Deep Red and CellROX Green are retained for a limited time upon fixation with formaldehyde. CellROX Green may be retained upon subsequent Triton X-100 permeabilization. Avoid the use of any acetone or alcohol-based fixatives or fixatives that include alcohol, such as formalin.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What dyes can I use to detect reactive oxygen species (ROS) in my bacteria?

Many dyes that are used on mammalian cells have also been shown to be useful in bacterial cells. For example, CellROX Deep Red Reagent has been shown to work in B. subtilis (see Reference: http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RaatschenNadja/diss.pdf). If you are interested in a particular dye, but are not sure if it will work on your bacteria, literature searches are the best way to check to see if it has been tested. If not, then it may be worth testing yourself.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am trying to label my cells with a reactive oxygen species (ROS) indicator dye, but I am not seeing a significant difference in signal. What could be happening?

First, make sure you have both a negative (untreated) and positive (ROS-induced) sample to compare. A good positive control can be the use of 100 µM menadione for one hour or 50 µM nefazodone for 24 hours. H2O2 can also be used, though it does not work well for CellROX dyes. Some dyes, such as H2DCFDA, require esterase cleavage, so don't incubate in the presence of serum (which contains esterases that can prematurely cleave the dye). If your positive control does not show significant change compared to the negative control, try increasing the concentration and label time for the dye. Our manuals give starting recommendations. Be sure to image your live cells as soon as possible. Only two dyes (CellROX Green and CellROX Deep Red) are retained with formaldehyde fixation. Finally, make sure you are using filters and instrument settings to match the excitation and emission spectra of the dye.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (52)

Citations & References
Abstract
The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter.
Authors:Hirota JA, Hirota SA, Warner SM, Stefanowicz D, Shaheen F, Beck PL, Macdonald JA, Hackett TL, Sin DD, Van Eeden S, Knight DA,
Journal:J Allergy Clin Immunol
PubMed ID:22227418
The airway epithelium is the first line of defense against inhaled insults and therefore must be capable of coordinating appropriate inflammatory and immune responses. We sought to test the hypothesis that the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, an intracellular danger-sensing complex, plays a critical role in ... More
Combination Small Molecule MEK and PI3K Inhibition Enhances Uveal Melanoma Cell Death in a Mutant GNAQ- and GNA11-Dependent Manner.
Authors:Khalili JS, Yu X, Wang J, Hayes BC, Davies MA, Lizee G, Esmaeli B, Woodman SE,
Journal:Clin Cancer Res
PubMed ID:22733540
Activating Q209L/P mutations in GNAQ or GNA11 (GNAQ/11) are present in approximately 80% of uveal melanomas. Mutant GNAQ/11 are not currently therapeutically targetable. Inhibiting key down-stream effectors of GNAQ/11 represents a rational therapeutic approach for uveal melanomas that harbor these mutations. The mitogen-activated protein/extracellular signal-regulated kinase/mitogen-activated protein kinase (MEK/MAPK) and ... More
Mutant BRAF induces DNA strand breaks, activates DNA damage response pathway, and up-regulates glucose transporter-1 in nontransformed epithelial cells.
Authors:Sheu JJ, Guan B, Tsai FJ, Hsiao EY, Chen CM, Seruca R, Wang TL, Shih IeM,
Journal:Am J Pathol
PubMed ID:22227015
'Although the oncogenic functions of activating BRAF mutations have been clearly demonstrated in human cancer, their roles in nontransformed epithelial cells remain largely unclear. Investigating the cellular response to the expression of mutant BRAF in nontransformed epithelial cells is fundamental to the understanding of the roles of BRAF in cancer ... More
Mechanisms of programmed cell death signaling in hair cells and support cells post-electrode insertion trauma.
Authors:Eshraghi AA, Lang DM, Roell J, Van De Water TR, Garnham C, Rodrigues H, Guardiola M, Gupta C, Mittal J,
Journal:
PubMed ID:25761716
'Programmed cell death (PCD) initially starts in the support cells (SCs) after electrode insertion trauma (EIT), followed by PCD in hair cells (HCs). Activation of caspase-3 was observed only in SCs. Protecting both SCs and HCs with selective otoprotective drugs at an early stage post implantation may help to preserve ... More
OPA1 Mutation and Late-Onset Cardiomyopathy: Mitochondrial Dysfunction and mtDNA Instability.
Authors:Chen L, Liu T, Tran A, Lu X, Tomilov AA, Davies V, Cortopassi G, Chiamvimonvat N, Bers DM, Votruba M, Knowlton AA,
Journal:J Am Heart Assoc
PubMed ID:23316298
'Mitochondrial fusion protein mutations are a cause of inherited neuropathies such as Charcot-Marie-Tooth disease and dominant optic atrophy. Previously we reported that the fusion protein optic atrophy 1 (OPA1) is decreased in heart failure. We investigated cardiac function, mitochondrial function, and mtDNA stability in a mouse model of the disease ... More