Reactivo CellROX™ Green para la detección de estrés oxidativo
Reactivo CellROX™ Green para la detección de estrés oxidativo
Invitrogen™

Reactivo CellROX™ Green para la detección de estrés oxidativo

El reactivo CellROX™ Green es una nueva sonda fluorogénica para medir el estrés oxidativo en células vivas. Este tinte penetraMás información
Have Questions?
Número de catálogoCantidad
C104445 x 50 μL
Número de catálogo C10444
Precio (MXN)
-
Cantidad:
5 x 50 μL
El reactivo CellROX™ Green es una nueva sonda fluorogénica para medir el estrés oxidativo en células vivas. Este tinte penetra en la célula y no es fluorescente cuando se encuentra en estado reducido, y además presenta una fluorescencia fotoestable verde tras la oxidación por parte de especies reactivas de oxígeno (ROS) y la posterior unión al ADN, con unos niveles máximos de absorción/emisión de ∼485/520 nm. Este reactivo se puede fijar con formaldehído y su señal sobrevive al tratamiento con detergente, lo que permite multiplexarlo con otros anticuerpos y tintes compatibles.

El reactivo CellROX™ Green es compatible con varias plataformas, como la microscopía de fluorescencia tradicional, el cribado masivo de información (HCS), la citometría de flujo y la fluorimetría basada en microplacas o el cribado analítico masivo (HTS). Este reactivo también es compatible con varios instrumentos de sobremesa, como nuestros instrumentos FLoid™, Tali™ y Attune™.

Además, el reactivo CellROX™ Green es:

• Compatible con otros tintes de células vivas, anticuerpos y células que expresan la proteína fluorescente de color rojo (RFP)
• Se suministra como una solución de dimetilsulfóxido (DMSO) estable y lista para su uso con un sencillo protocolo sin lavado compatible con los flujos de trabajo estándar de la microscopía de fluorescencia
• Se presenta en cinco viales de un solo uso que contienen suficiente cantidad de reactivo para cinco placas de 96 pocillos o 100 cubreobjetos

El estrés oxidativo es el resultado de un desequilibrio entre la producción de especies reactivas de oxígeno (ROS) y la capacidad de las células para eliminarlas. Las ROS juegan un papel importante en la progresión de varias enfermedades, incluida la inflamación, la aterosclerosis, el envejecimiento y los trastornos degenerativos relacionados con la edad.

Para uso exclusivo en investigación. No diseñado para uso terapéutico o de diagnóstico en animales o humanos.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
ColorVerde
Concentración2.5 mM stabilized solution in DMSO
Para utilizar con (equipo)Imaging, HCS, Cytometer
FormatoCongelado
Cantidad5 x 50 μL
Método de detecciónLive Cell Imaging
Excitation/Emission485/520 nm
IndicatorOxidative stress
Línea de productosCellROX
Unit SizeEach
Contenido y almacenamiento
Store at ≤–20°C. Protect from light and desiccate.

Preguntas frecuentes

I need a formaldehyde-fixable reactive oxygen species detection assay. Is H2 DCFDA fixable?

H2DCFDA and similar derivatives are not fixable. The same goes for dihydroethidium and dihydrorhodamine. However, CellROX Deep Red and CellROX Green are retained for a limited time upon fixation with formaldehyde. CellROX Green may be retained upon subsequent Triton X-100 permeabilization. Avoid the use of any acetone or alcohol-based fixatives or fixatives that include alcohol, such as formalin.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Can CellROX Green dye diluted in DMSO be subjected to freeze-thaw cycles?

CellROX Green dye diluted in a DMSO stock solution is stable for multiple freeze-thaw cycles, but it is not stable long-term in aqueous solution. Please note, every time the stock solution is opened, some of the dye can oxidize, which will increase background noise. DMSO readily absorbs moisture from the air, especially when cold, so be sure to completely thaw the stock solution to room temperature before opening and only open briefly. Water in the DMSO will gradually cause the dye to precipitate and come out of solution. Minimize the number of times you use a stock solution to several freeze-thaw cycles or make small aliquots to reduce the number of freeze-thaw cycles.

Find additional tips, troubleshooting help, and resources within our Flow Cytometry Support Center.

What is the difference between the CellROX Green Flow Cytometry Assay Kit (Cat. No. C10492) and CellROX Green Reagent, for oxidative stress detection (Cat. No. C10444)?

The main difference between the CellROX Green Flow Cytometry Assay Kit (Cat. No. C10492) and CellROX Green Reagent, for oxidative stress detection (Cat. No. C10444), is the suggested final working concentrations and application. The CellROX Green in the CellROX Green Flow Cytometry Assay Kit is specifically designed for flow cytometry analysis and is used at a lower concentration than what is required for imaging, as fluorescence-activated cell sorting (FACS) is a very sensitive detection system.

The standalone CellROX Green Reagent (Cat. No. C10444) is marketed for fluorescent microscopy and require working concentrations appropriate for imaging. This can typically be as much as 10-fold higher than the concentration recommended for flowcytometry. The standalone CellROX Green Reagent can also be used for flowcytometry; however, the working concentration will have to be optimized. For the flow cytometry quick reference, use the link below.

CellROX Flow Cytometry Assay Kit Quick Reference

Find additional tips, troubleshooting help, and resources within our Flow Cytometry Support Center.

What dyes can I use to detect reactive oxygen species (ROS) in my bacteria?

Many dyes that are used on mammalian cells have also been shown to be useful in bacterial cells. For example, CellROX Deep Red Reagent has been shown to work in B. subtilis (see Reference: http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RaatschenNadja/diss.pdf). If you are interested in a particular dye, but are not sure if it will work on your bacteria, literature searches are the best way to check to see if it has been tested. If not, then it may be worth testing yourself.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am trying to label my cells with a reactive oxygen species (ROS) indicator dye, but I am not seeing a significant difference in signal. What could be happening?

First, make sure you have both a negative (untreated) and positive (ROS-induced) sample to compare. A good positive control can be the use of 100 µM menadione for one hour or 50 µM nefazodone for 24 hours. H2O2 can also be used, though it does not work well for CellROX dyes. Some dyes, such as H2DCFDA, require esterase cleavage, so don't incubate in the presence of serum (which contains esterases that can prematurely cleave the dye). If your positive control does not show significant change compared to the negative control, try increasing the concentration and label time for the dye. Our manuals give starting recommendations. Be sure to image your live cells as soon as possible. Only two dyes (CellROX Green and CellROX Deep Red) are retained with formaldehyde fixation. Finally, make sure you are using filters and instrument settings to match the excitation and emission spectra of the dye.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (34)

Citations & References
Abstract
Arsenic increases Pi-mediated vascular calcification and induces premature senescence in vascular smooth muscle cells.
Authors:Martín-Pardillos A, Sosa C, Sorribas V,
Journal:Toxicol Sci
PubMed ID:23104429
Several mechanisms have been proposed to explain the vascular toxicity of arsenic. Some of them are described in this work, such as stress-induced premature senescence (SIPS), dedifferentiation, and medial vascular calcification, and they all affect vascular smooth muscle cells (VSMC). Rat aortic VSMC were treated with 1-100 µM of either ... More
Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension.
Authors:Sollinger D, Eißler R, Lorenz S, Strand S, Chmielewski S, Aoqui C, Schmaderer C, Bluyssen H, Zicha J, Witzke O, Scherer E, Lutz J, Heemann U, Baumann M,
Journal:
PubMed ID:24302630
'Recent publications have shed new light on the role of the adaptive and innate immune system in the pathogenesis of hypertension. However, there are limited data whether receptors of the innate immune system may influence blood pressure. Toll-like receptor 4 (TLR4), a pattern recognition receptor, is a key component of ... More
Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia.
Authors:Zhao J, Ha Y, Liou GI, Gonsalvez GB, Smith SB, Bollinger KE,
Journal:
PubMed ID:24812552
'To evaluate the effects of the s 1 receptor (sR1) agonist, (+)-pentazocine, on lipopolysaccharide (LPS)-induced inflammatory changes in retinal microglia cells. Retinal microglia cells were isolated from Sprague-Dawley rat pups. Cells were treated with LPS with or without (+)-pentazocine and with or without the sR1 antagonist BD1063. Morphologic changes were ... More
Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice.
Authors:Liu Y, Lü L, Hettinger CL, Dong G, Zhang D, Rezvani K, Wang X, Wang H,
Journal:
PubMed ID:24553923
Ubiquilin-1 (Ubqln1 or Ubqln), a ubiquitin-like protein, mediates degradation of misfolded proteins and has been implicated in a number of pathological and physiological conditions. To better understand its function in vivo, we recently generated transgenic (Tg) mice that globally overexpress mouse Ubqln in a variety of tissues and ubqln conditional ... More
Loss of the m-AAA protease subunit AFG3L2 causes mitochondrial transport defects and tau hyperphosphorylation.
Authors:Kondadi AK, Wang S, Montagner S, Kladt N, Korwitz A, Martinelli P, Herholz D, Baker MJ, Schauss AC, Langer T, Rugarli EI,
Journal:
PubMed ID:24681487
The m-AAA protease subunit AFG3L2 is involved in degradation and processing of substrates in the inner mitochondrial membrane. Mutations in AFG3L2 are associated with spinocerebellar ataxia SCA28 in humans and impair axonal development and neuronal survival in mice. The loss of AFG3L2 causes fragmentation of the mitochondrial network. However, the ... More