Kit de ensayo de citometría de flujo CellROX™ Deep Red
Kit de ensayo de citometría de flujo CellROX™ Deep Red
Invitrogen™

Kit de ensayo de citometría de flujo CellROX™ Deep Red

El kit de ensayos de citometría de flujo CellROX™ Deep Red permite detectar especies reactivas de oxígeno (ROS) en célulasMás información
Have Questions?
Número de catálogoCantidad
C10491100 ensayos
Número de catálogo C10491
Precio (MXN)
-
Cantidad:
100 ensayos
El kit de ensayos de citometría de flujo CellROX™ Deep Red permite detectar especies reactivas de oxígeno (ROS) en células vivas mediante la citometría de flujo. El kit incluye el nuevo reactivo CellROX™ Deep Red fluorogénico, la tinción de células muertas SYTOX™ Blue, N-acetilcisteína (un antioxidante para el control negativo) y la solución de hidroperóxido de butilo terciario (TBHP, un inductor de ROS).

Consulte la guía de selección para todos los reactivos y kits CellROX™.

El kit de ensayos de citometría de flujo CellROX™ Deep Red incluye:

• Sonda fluorogénica formulada para la citometría de flujo que se oxida en presencia de ROS
• Compatibilidad multicolor: apenas existe solapamiento con los fluoróforos que se excitan con otras líneas de láser, lo que facilita el multiplexing con otros reactivos
• Protocolo sencillo: las células se pueden teñir en medios completos o en otros tampones adecuados, por lo que no es necesario utilizar medios sin suero

El reactivo de detección CellROX™ Deep Red penetra en las células y no es fluorescente (o apenas presenta fluorescencia) cuando se encuentra en estado reducido. Tras la oxidación, el reactivo exhibe una intensa señal fluorogénica que tiene una absorción/emisión máximas de 644/665 nm y que se mantiene localizada en el citoplasma. Cuando se utiliza junto con la tinción de células muertas SYTOX™ Blue, las células con y sin estrés oxidativo se pueden distinguir con fiabilidad de las células muertas con ayuda de un citómetro de flujo.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Tipo de célulaCélulas de mamíferos, células eucariotas
Método de detecciónFluorescente
Tipo de coloranteReactivo CellROX™ Deep Red
FormatoTubo(s)
Cantidad100 ensayos
Condiciones de envíoHielo húmedo
SolubilidadDMSO (dimetilsulfóxido)
EmissionCellROX™ Deep Red: 644⁄665, SYTOX™ Blue: 444⁄480
Para utilizar con (aplicación)Citometría de flujo
Para utilizar con (equipo)Citómetro de flujo
Línea de productosCellROX
Tipo de productoReactivo
Unit SizeEach
Contenido y almacenamiento
Contiene 1 vial de reactivo CellROX™ Deep Red (25 µl), 1 vial de tinción de células muertas SYTOX™ Blue (100 µl), 2 viales de N-acetilcisteína (10 mg por vial), 1 vial de hidroperóxido de terc-butilo (50 µl, solución al 70 % en agua) y 1 vial de DMSO (200 µl).

Almacenar el kit entre - 5 y - 30 °C, protegido de la luz. El reactivo CellROX™ es sensible al aire.

Preguntas frecuentes

I want to assay cells for reactive oxygen species using carboxy-H2DCFDA, but I want to do so with a plate reader instead of microscope. Will it work?

It has been done. The problem is that plate readers are less sensitive than microscopes, with far less signal-to-background difference. It is worth trying, but first optimize concentrations and loading times with control cells, use a plate with little to no autofluorescence, and possibly optimize the gain setting in order to get the best signal possible. But don't expect the same sensitivity, even with optimization.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I have GFP-transfected cells and need to label for reactive oxygen species. Can I use H2DCFDA?

This is not recommended as the two dyes overlap in the emission wavelength. There are other ROS reagents available in different wavelengths, such as CellROX Deep Red, which emits in the far-red range (665 nm), or dihydroethidium, which is emits in the visible red range (620 nm).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I need a formaldehyde-fixable reactive oxygen species detection assay. Is H2 DCFDA fixable?

H2DCFDA and similar derivatives are not fixable. The same goes for dihydroethidium and dihydrorhodamine. However, CellROX Deep Red and CellROX Green are retained for a limited time upon fixation with formaldehyde. CellROX Green may be retained upon subsequent Triton X-100 permeabilization. Avoid the use of any acetone or alcohol-based fixatives or fixatives that include alcohol, such as formalin.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What dyes can I use to detect reactive oxygen species (ROS) in my bacteria?

Many dyes that are used on mammalian cells have also been shown to be useful in bacterial cells. For example, CellROX Deep Red Reagent has been shown to work in B. subtilis (see Reference: http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RaatschenNadja/diss.pdf). If you are interested in a particular dye, but are not sure if it will work on your bacteria, literature searches are the best way to check to see if it has been tested. If not, then it may be worth testing yourself.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What cellular processes can be analyzed with a flow cytometer?

-Calcium flux: Each of the Oregon Green calcium indicators binds intracellular calcium with increasing affinity, providing a sensitivity range to match many applications. Oregon Green probes emit green fluorescence at resting levels of Ca2+ and increase their fluorescence intensity 14-fold with increasing Ca2+ concentration. The cell-permeant formulation (Cat. No. O6807) can be loaded in cell media and is compatible with flow cytometry.
-Rhodamine-based calcium indicators comprise a range of probes for large or small changes in Ca2+ concentration. They exhibit a 50-fold increase in fluorescence upon calcium binding and offer a range of wavelengths that can be used in conjunction with GFP or green-fluorescent dyes for multiplexing. Rhod-2, AM (Cat. No. R1245MP), in particular, localizes to mitochondria and can be used with flow cytometry.
-Membrane potential: A distinctive feature of the early stages of apoptosis is the disruption of the mitochondria, including changes in membrane and redox potential. We offer a range of products specifically designed to assay mitochondrial membrane potential in live cells by flow cytometry, with minimal disruption of cellular function. The MitoProbe family of mitochondrial stains (Cat. Nos. M34150, M34151, and M34152) provide quick, easy, and reliable flow cytometric detection of the loss of mitochondrial membrane potential that occurs during apoptosis. MitoTracker dyes (Cat. Nos. M7510 and M7512) are membrane potential-dependent probes for staining mitochondria in live cells. The staining pattern of MitoTracker dyes is retained throughout subsequent flow cytometry immunocytochemistry, DNA end labeling, in situ hybridization, or counterstaining steps. The Mitochondrial Permeability Transition Pore Assay (Cat. No. M34153) provides a more direct method of measuring mitochondrial permeability transition pore opening than assays relying on mitochondrial membrane potential alone. The mitochondrial permeability transition pore (MPTP) is a non-specific channel formed by components from the inner and outer mitochondrial membranes, and appears to be involved in the release of mitochondrial components during cell death.
-Phagocytosis: In phagocytosis, cells internalize particulate matter such as microorganisms, and this process is important for immune responses and during the clearance of apoptotic cells. Probes for studying phagocytosis include BioParticles indicators—bacteria and yeast labeled with fluorescent dyes.
-Tracking phagocytosis using a quench/wash-based assay can report on simple uptake, or a pH indicator can be used to monitor stages in the pathway. We have no-wash assays labeled with pHrodo Red or Green (Cat. Nos. A10010, P35361, P35364, P35365, P35366, and P35367) and no-wash assays for whole blood (Cat. Nos. A10025, A10026, P35381, and P35382), all suitable for flow cytometry.
-pH changes: Sensitive pH determinations can be made in a physiological range using either fluorescent intensity or ratiometric measurements. pHrodo dyes (Cat. Nos. P35373 and P35372) provide signal intensity modulation from pH 2 to pH 9 and with a choice of fluorescent wavelengths. Tracking internalization of fluorescent dextran is a routine method for analyzing pH changes in cellular compartments. Dextran conjugates of pHrodo dyes (Cat. Nos. P35368 and P10361) provide the most complete solution by allowing discrimination of vesicles from early endosomes to lysosomes, with no quench or wash required.
-Reactive oxygen species: Cells that are environmentally stressed usually contain greatly increased levels of reactive oxygen species (ROS). CellROX reagents are fluorogenic probes developed for the detection and quantitation of ROS in live cells. These cell-permeant reagents are non-fluorescent or very weakly fluorescent in the reduced state; however, when oxidized, they become brightly fluorescent and remain localized within the cell. We offer CellROX Green (Cat. No. C10492), CellROX Orange (Cat. No. C10493), and CellROX Deep Red (Cat. No. C10491) Assay Kits validated for flow cytometry.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (12)

Citations & References
Abstract
Critical Role for the NLRP3 Inflammasome during Acute Lung Injury.
Authors:Grailer JJ, Canning BA, Kalbitz M, Haggadone MD, Dhond RM, Andjelkovic AV, Zetoune FS, Ward PA,
Journal:
PubMed ID:24795455
'The inflammasome is a key factor in innate immunity and senses soluble pathogen and danger-associated molecular patterns as well as biological crystals (urate, cholesterol, etc.), resulting in expression of IL-1ß and IL-18. Using a standard model of acute lung injury (ALI) in mice featuring airway instillation of LPS, ALI was ... More
A role for apoptosis-inducing factor in T cell development.
Authors:Banerjee H, Das A, Srivastava S, Mattoo HR, Thyagarajan K, Khalsa JK, Tanwar S, Das DS, Majumdar SS, George A, Bal V, Durdik JM, Rath S,
Journal:J Exp Med
PubMed ID:22869892
Apoptosis-inducing factor (Aif) is a mitochondrial flavoprotein that regulates cell metabolism and survival in many tissues. We report that aif-hypomorphic harlequin (Hq) mice show thymic hypocellularity and a cell-autonomous thymocyte developmental block associated with apoptosis at the ß-selection stage, independent of T cell receptor ß recombination. No abnormalities are observed ... More
Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells.
Authors:Kim TH, Song J, Kim SH, Parikh AK, Mo X, Palanichamy K, Kaur B, Yu J, Yoon SO, Nakano I, Kwon CH,
Journal:
PubMed ID:24879047
Piperlongumine, a natural plant product, kills multiple cancer types with little effect on normal cells. Piperlongumine raises intracellular levels of reactive oxygen species (ROS), a phenomenon that may underlie the cancer-cell killing. Although these findings suggest that piperlongumine could be useful for treating cancers, the mechanism by which the drug ... More
Dual roles for splice variants of the glucuronidation pathway as regulators of cellular metabolism.
Authors:Rouleau M, Roberge J, Bellemare J, Guillemette C,
Journal:
PubMed ID:24141015
Transcripts of the UGT1A gene, encoding half of human UDP-glucuronosyltransferase (UGT) enzymes, undergo alternative splicing, resulting in active enzymes named isoforms 1 (i1s) and novel truncated isoforms 2 (i2s). Here, we investigated the effects of depleting endogenous i2 on drug response and attempted to unveil any additional biologic role(s) for ... More
Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity.
Authors:Latil M, Rocheteau P, Châtre L, Sanulli S, Mémet S, Ricchetti M, Tajbakhsh S, Chrétien F,
Journal:Nat Commun
PubMed ID:22692546
The accessibility to stem cells from healthy or diseased individuals, and the maintenance of their potency are challenging issues for stem cell biology. Here we report the isolation of viable and functional skeletal myogenic cells from humans up to 17 days, and mice up to 14 days post mortem, much ... More