E. coli químicamente competente One Shot™ BL21(DE3)
<i>E. coli</i> químicamente competente One Shot&trade; BL21(DE3)
Invitrogen™

E. coli químicamente competente One Shot™ BL21(DE3)

Las células E. coli químicamente competentes One Shot™ BL21(DE3) son ideales para el uso con sistemas de expresión basados enMás información
Have Questions?
Número de catálogoCantidad
C60000321 x 50 μl
Número de catálogo C600003
Precio (MXN)
-
Cantidad:
21 x 50 μl
Las células E. coli químicamente competentes One Shot™ BL21(DE3) son ideales para el uso con sistemas de expresión basados en el promotor T7 bacteriófago (por ejemplo, pRSET, pCR™T7 y pET). Las células BL21(DE3) contienen el lisógeno DE3 lambda. Las proteínas recombinantes que no son tóxicas para E. coli se suelen expresar a niveles más elevados en células BL21(DE3) que en BL21(DE3)pLysS o BL21(DE3)pLysE. Sin embargo, los niveles basales de expresión de genes heterólogos son significativamente más altos en BL21(DE3) que en BL21(DE3)pLysS o BL21(DE3)pLysE.

Acerca de las cepas BL21
Las cepas BL21 descienden de E. coli B y se han construido específicamente para una expresión de alto nivel de proteínas recombinantes. Estas cepas tienen dos atributos importantes que las hacen ideales para la expresión de proteínas: marcadores genéticos clave e inducibilidad de expresión proteica. Los marcadores genéticos más importantes ayudan al ARN y a las proteínas a acumularse a niveles altos sin degradación. La inducibilidad ayuda a minimizar los efectos tóxicos de algunas proteínas recombinantes.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Resistencia bacteriana a los antibióticosNo
Tramado azul/blancoNo
Clonación de ADN metiladoNo
Contiene el episoma F'Carece de episoma F'
Compatibilidad de alto rendimientoNo compatible con alto rendimiento (manual)
Mejora la calidad de los plásmidosNo
Improves Protein StabilityYes (lon, ompT)
Improves RNA StabilityNo
Preparación de ADN no metiladoYes (dcm)
Línea de productosOne Shot
Tipo de productoCélula competente
Cantidad21 x 50 μl
Reduce la recombinaciónNo
Condiciones de envíoDry Ice
Resistente al fago T1 (tonA)No
Toxic ProteinsNo
Nivel de eficiencia de transformaciónEficacia media (10^8-10^9 ufc⁄µ g)
FormatoTubo
PromotorT7
EspecieE. coli
Unit SizeEach
Contenido y almacenamiento
Contiene:
• E. coli One Shot™ BL21(DE3): 20 viales, 50 µl cada uno (total de 1 ml)
• ADN pUC19 (10 pg/ul): 1 vial, 50 µl
•, medio SOC: 1 frasco, 6 ml

Almacenar las células competentes a - 80 °C. Almacene el producto pUC19 DNA a - 20 °C. Almacenar el medio S.O.C. a 4 °C o a temperatura ambiente.

Preguntas frecuentes

My gene of interest is toxic to bacterial cells. Are there any precautions you can suggest?

Several precautions may be taken to prevent problems resulting from basal level expression of a toxic gene of interest. These methods all assume that the T7-based or Champion-based expression plasmid has been correctly designed and created.

- Propagate and maintain your expression plasmid in a strain that does not contain T7 RNA polymerase (i.e., DH5α).
- If using BL21 (DE3) cells, try growing cells at room temperature rather than 37 degrees C for 24-48 hr.
- Perform a fresh transformation using a tightly regulated E. coli strain, such as BL21-AI cells.
- After following the transformation protocol, plate the transformation reaction on LB plates containing 100 µg/mL ampicillin and 0.1% glucose. The presence of glucose represses basal expression of T7 RNA polymerase.
- Following transformation of BL21-AI cells, pick 3 or 4 transformants and inoculate directly into fresh LB medium containing 100 µg/mL ampicillin or 50 µg/mL carbenicillin (and 0.1% glucose, if desired). When the culture reaches an OD600 of 0.4, induce expression of the recombinant protein by adding L-arabinose to a final concentration of 0.2%.
- When performing expression experiments, supplement the growth medium with 0.1% glucose in addition to 0.2% arabinose.
- Try a regulated bacterial expression system such as our pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system. How do I know if I'm seeing degradation of my protein or if what I’m seeing is codon usage bias?

Typically, if you see 1-2 dominant bands, translation stopped prematurely due to codon usage bias. With degradation, you usually see a ladder of bands. With degradation, you can try using a protease inhibitor and add it to the lysis buffer to help prevent degradation. If degradation is the issue, a time point experiment can be done to determine the best time to harvest the cells.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system and am getting inclusion bodies. What should I do?

If you are having a solubility issue, try to decrease the temperature or decrease the amount of IPTG used for induction. You can also try a different, more stringent cell strain for expression. Adding 1% glucose to the bacterial culture medium during expression can also help.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm getting low protein yield from my bacterial expression system. What can I do to improve this?

- Inoculate from fresh bacterial cultures, since higher protein yields are generally obtained from a fresh bacterial colony.

- Check the codon usage in the recombinant protein sequence for infrequently used codons. Replacing the rare codons with more commonly used codons can significantly increase expression levels. For example, the arginine codons AGG and AGA are used infrequently by E. coli, so the level of tRNAs for these codons is low.

- Add protease inhibitors, such as PMSF, to buffers during protein purification. Use freshly made PMSF, since PMSF loses effectiveness within 30 min of dilution into an aqueous solution.

- If you are using ampicillin for selection in your expression experiments, you may be experiencing plasmid instability due to the absence of selective conditions. This occurs as the ampicillin is destroyed by β-lactamase or hydrolyzed under the acidic media conditions generated by bacterial metabolism. You may want to substitute carbenicillin for ampicillin in your transformation and expression experiments.

- The recombinant protein may be toxic to bacterial cells. Try a tighter regulation system for competent cell expression such as BL21-AI. You may also consider trying a different expression system such as the pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

My cells are growing very slowly, and I'm not getting any protein expression from my baterial expression system. What can I do to fix this?

This typically occurs when your gene of interest is toxic. Try using a tighter regulation system, such as BL21 (DE3) (pLysS) or BL21 (DE3) (pLysE), or BL21(AI).

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Citations & References (12)

Citations & References
Abstract
The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly.
Authors:Javanbakht H, Halwani R, Cen S, Saadatmand J, Musier-Forsyth K, Gottlinger H, Kleiman L,
Journal:J Biol Chem
PubMed ID:12756246
'Human lysyl-tRNA synthetase (LysRS) is a tRNA-binding protein that is selectively packaged into HIV-1 along with its cognate tRNALys isoacceptors. Evidence exists that Gag alone is sufficient for the incorporation of LysRS into virions. Herein, using both in vitro and in vivo methods, we begin to map regions in Gag ... More
The anti-trp RNA-binding attenuation protein (Anti-TRAP), AT, recognizes the tryptophan-activated RNA binding domain of the TRAP regulatory protein.
Authors: Valbuzzi Angela; Gollnick Paul; Babitzke Paul; Yanofsky Charles;
Journal:J Biol Chem
PubMed ID:11786553
'In Bacillus subtilis, the trp RNA-binding attenuation protein (TRAP) regulates expression of genes involved in tryptophan metabolism in response to the accumulation of l-tryptophan. Tryptophan-activated TRAP negatively regulates expression by binding to specific mRNA sequences and either promoting transcription termination or blocking translation initiation. Conversely, the accumulation of uncharged tRNA(Trp) ... More
The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase.
Authors:Tokarz S, Berset C, La Rue J, Friedman K, Nakayama K, Nakayama K, Zhang DE, Lanker S,
Journal:J Biol Chem
PubMed ID:15342634
'The Skp2 oncoprotein belongs to the family of F-box proteins that function as substrate recognition factors for SCF (Skp1, cullin, F-box protein) E3 ubiquitin-ligase complexes. Binding of the substrate to the SCFSkp2 complex catalyzes the conjugation of ubiquitin molecules to the bound substrate, resulting in multi-ubiquitination and rapid degradation by ... More
A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci.
Authors:Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF.
Journal:Science
PubMed ID:11239156
beta-Lactamase and penicillin-binding protein 2a mediate staphylococcal resistance to beta-lactam antibiotics, which are otherwise highly clinically effective. Production of these inducible proteins is regulated by a signal-transducing integral membrane protein and a transcriptional repressor. The signal transducer is a fusion protein with penicillin-binding and zinc metalloprotease domains. The signal for ... More
The solution structure and interactions of CheW from Thermotoga maritima.
Authors: Griswold Ian J; Zhou Hongjun; Matison Mikenzie; Swanson Ronald V; McIntosh Lawrence P; Simon Melvin I; Dahlquist Frederick W;
Journal:Nat Struct Biol
PubMed ID:11799399
Using protein from the hyperthermophile Thermotoga maritima, we have determined the solution structure of CheW, an essential component in the formation of the bacterial chemotaxis signaling complex. The overall fold is similar to the regulatory domain of the chemotaxis kinase CheA. In addition, interactions of CheW with CheA were monitored ... More