One Shot™ BL21-AI™ Chemically Competent E. coli
One Shot&trade; BL21-AI&trade; Chemically Competent <i>E. coli</i>
Invitrogen™

One Shot™ BL21-AI™ Chemically Competent E. coli

Las células de E. coli One Shot™ BL21-AI™ son células químicamente competentes diseñadas para aplicaciones que requieren una regulación estrictaMás información
Have Questions?
Número de catálogoCantidad
C60700321 x 50 μl
Número de catálogo C607003
Precio (MXN)
-
Cantidad:
21 x 50 μl
Las células de E. coli One Shot™ BL21-AI™ son células químicamente competentes diseñadas para aplicaciones que requieren una regulación estricta y una expresión firme de proteínas tóxicas desde cualquier sistema de expresión basado en el promotor T7. Las células químicamente competentes One Shot™ BL21-AI™ tienen una eficacia de transformación de > 1 × 108 cfu/µg de ADN plasmídico.
• Ideales para inducir la expresión de proteínas tóxicas
• La expresión génica se regula mediante la adición de L-arabinosa al cultivo
• Adecuadas para el uso con cualquier plásmido basado en el promotor T7
• Se suministran en un práctico formato One Shot™

Excelente expresión de proteínas recombinantes tóxicas
Las células de E. coli One Shot™ BL21-AI™ contienen una inserción cromosómica del gen que codifica la ARN polimerasa T7 (T7RNAP) en el locus araB del operón araBAD, poniendo la regulación del T7 RNAP bajo el control del promotor araBAD inducible de arabinasa (1). Por lo tanto, esta cepa es especialmente útil para la expresión de genes que pueden ser tóxicos para otras cepas BL21 donde la expresión basal de T7 RNAP presenta fugas. La cepa BL21-AI™ no contiene la proteasa Ion y es deficiente en la proteasa de la membrana externa (OmpT). Este genotipo reduce la degradación de proteínas heterólogas expresadas en esta cepa. Por último, la producción de proteína recombinante obtenida de BL21-AI™ suele ser similar a la obtenida de otras cepas BL21.

Genotipo:
F-ompT hsdSB (rB- mB-) gal dcm araB::T7RNAP-tet

Fácil de usar, tubo único
El formato de tubo único y un solo uso permite que todos los pasos de transformación tengan lugar en el mismo tubo, lo que permite ahorrar tiempo y evitar la contaminación.

Encuentre la cepa y el formato que usted necesita
También ofrecemos muchas otras cepas y formatos diferentes de células químicamente competentes y células electrocompetentes para ayudarle a satisfacer sus necesidades específicas de transformación. Para la expresión de proteínas recombinantes no tóxicas, elija nuestras células químicamente competentes One Shot™ BL21 Star™ (DE3) o células químicamente competentes One Shot™ BL21 Star™ (DE3) pLysS.

Para uso exclusivo en investigación. No se ha diseñado para uso diagnóstico o terapéutico en animales o humanos.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Resistencia bacteriana a los antibióticosYes (Tetracycline)
Tramado azul/blancoNo
Clonación de ADN metiladoNo
Contiene el episoma F'Carece de episoma F'
Compatibilidad de alto rendimientoNo compatible con alto rendimiento (manual)
Mejora la calidad de los plásmidosNo
Improves Protein StabilityYes (lon, ompT)
Improves RNA StabilityNo
Preparación de ADN no metiladoYes (dcm)
Línea de productosOne Shot
Tipo de productoCélula competente
Cantidad21 x 50 μl
Reduce la recombinaciónNo
Condiciones de envíoDry Ice
Resistente al fago T1 (tonA)No
Toxic ProteinsYes (araB)
Nivel de eficiencia de transformaciónEficacia media (10^8-10^9 ufc⁄µ g)
FormatoTubo
PromotorT7
EspecieE. coli
Unit SizeEach
Contenido y almacenamiento
Las células de E. coli BL21-AI™ químicamente competentes se suministran en alícuotas de un solo uso de 50 µl, con medio S.O.C. y plásmido de control superenrollado. Almacene las células competentes a -80 °C. Se garantiza la estabilidad de todos los componentes durante 6 meses si se almacenan correctamente.

Preguntas frecuentes

My gene of interest is toxic to bacterial cells. Are there any precautions you can suggest?

Several precautions may be taken to prevent problems resulting from basal level expression of a toxic gene of interest. These methods all assume that the T7-based or Champion-based expression plasmid has been correctly designed and created.

- Propagate and maintain your expression plasmid in a strain that does not contain T7 RNA polymerase (i.e., DH5α).
- If using BL21 (DE3) cells, try growing cells at room temperature rather than 37 degrees C for 24-48 hr.
- Perform a fresh transformation using a tightly regulated E. coli strain, such as BL21-AI cells.
- After following the transformation protocol, plate the transformation reaction on LB plates containing 100 µg/mL ampicillin and 0.1% glucose. The presence of glucose represses basal expression of T7 RNA polymerase.
- Following transformation of BL21-AI cells, pick 3 or 4 transformants and inoculate directly into fresh LB medium containing 100 µg/mL ampicillin or 50 µg/mL carbenicillin (and 0.1% glucose, if desired). When the culture reaches an OD600 of 0.4, induce expression of the recombinant protein by adding L-arabinose to a final concentration of 0.2%.
- When performing expression experiments, supplement the growth medium with 0.1% glucose in addition to 0.2% arabinose.
- Try a regulated bacterial expression system such as our pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system. How do I know if I'm seeing degradation of my protein or if what I’m seeing is codon usage bias?

Typically, if you see 1-2 dominant bands, translation stopped prematurely due to codon usage bias. With degradation, you usually see a ladder of bands. With degradation, you can try using a protease inhibitor and add it to the lysis buffer to help prevent degradation. If degradation is the issue, a time point experiment can be done to determine the best time to harvest the cells.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system and am getting inclusion bodies. What should I do?

If you are having a solubility issue, try to decrease the temperature or decrease the amount of IPTG used for induction. You can also try a different, more stringent cell strain for expression. Adding 1% glucose to the bacterial culture medium during expression can also help.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm getting low protein yield from my bacterial expression system. What can I do to improve this?

- Inoculate from fresh bacterial cultures, since higher protein yields are generally obtained from a fresh bacterial colony.

- Check the codon usage in the recombinant protein sequence for infrequently used codons. Replacing the rare codons with more commonly used codons can significantly increase expression levels. For example, the arginine codons AGG and AGA are used infrequently by E. coli, so the level of tRNAs for these codons is low.

- Add protease inhibitors, such as PMSF, to buffers during protein purification. Use freshly made PMSF, since PMSF loses effectiveness within 30 min of dilution into an aqueous solution.

- If you are using ampicillin for selection in your expression experiments, you may be experiencing plasmid instability due to the absence of selective conditions. This occurs as the ampicillin is destroyed by β-lactamase or hydrolyzed under the acidic media conditions generated by bacterial metabolism. You may want to substitute carbenicillin for ampicillin in your transformation and expression experiments.

- The recombinant protein may be toxic to bacterial cells. Try a tighter regulation system for competent cell expression such as BL21-AI. You may also consider trying a different expression system such as the pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

My cells are growing very slowly, and I'm not getting any protein expression from my baterial expression system. What can I do to fix this?

This typically occurs when your gene of interest is toxic. Try using a tighter regulation system, such as BL21 (DE3) (pLysS) or BL21 (DE3) (pLysE), or BL21(AI).

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Citations & References (9)

Citations & References
Abstract
A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo.
Authors:Laitinen OH, Airenne KJ, Hytönen VP, Peltomaa E, Mähönen AJ, Wirth T, Lind MM, Mäkelä KA, Toivanen PI, Schenkwein D, Heikura T, Nordlund HR, Kulomaa MS, Ylä-Herttuala S,
Journal:Nucleic Acids Res
PubMed ID:15731335
We have constructed a novel tetra-promoter vector (pBVboostFG) system that enables screening of gene/cDNA libraries for functional genomic studies. The vector enables an all-in-one strategy for gene expression in mammalian, bacterial and insect cells and is also suitable for direct use in vivo. Virus preparation is based on an improved mini Tn7 transpositional ... More
Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde.
Authors:Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ,
Journal:Proc Natl Acad Sci U S A
PubMed ID:16698923
'An important phenylalanine-derived volatile compound produced by plants is 2-phenylethanol. It is a major contributor to flavor in many foods, including fresh fruits, such as tomato, and an insect-attracting scent in roses and many other flowers. Despite the centrality of 2-phenylethanol to flavor and fragrance, the plant genes responsible for ... More
Identification of an antiangiogenic FGF2-binding site in the N terminus of the soluble pattern recognition receptor PTX3.
Authors:Camozzi M, Rusnati M, Bugatti A, Bottazzi B, Mantovani A, Bastone A, Inforzato A, Vincenti S, Bracci L, Mastroianni D, Presta M,
Journal:J Biol Chem
PubMed ID:16769728
'Long-pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 comprises a pentraxin-like C-terminal domain involved in complement activation via C1q interaction and an N-terminal extension with unknown functions. PTX3 binds fibroblast growth factor-2 (FGF2), inhibiting its pro-angiogenic and pro-restenotic activity. Here, ... More
Domain structure and DNA binding regions of beta protein from bacteriophage lambda.
Authors:Wu Z, Xing X, Bohl CE, Wisler JW, Dalton JT, Bell CE,
Journal:J Biol Chem
PubMed ID:16820360
beta protein from bacteriophage lambda promotes a single-strand annealing reaction that is central to Red-mediated recombination at double-strand DNA breaks and chromosomal ends. beta protein binds most tightly to an intermediate of annealing formed by the sequential addition of two complementary oligonucleotides. Here we have characterized the domain structure of ... More
Proteolytic processing of sapovirus ORF1 polyprotein.
Authors:Oka T, Katayama K, Ogawa S, Hansman GS, Kageyama T, Ushijima H, Miyamura T, Takeda N,
Journal:J Virol
PubMed ID:15919882
The genome of Sapovirus (SaV), a causative agent of gastroenteritis in humans and swine, contains either two or three open reading frames (ORFs). Functional motifs characteristic to the 2C-like NTPase (NTPase), VPg, 3C-like protease (Pro), 3D-like RNA-dependent RNA polymerase (Pol), and capsid protein (VP1) are encoded in the ORF1 polyprotein, ... More