Dextran, Alexa Fluor™ 568; 10,000 MW, Anionic, Fixable
Dextran, Alexa Fluor™ 568; 10,000 MW, Anionic, Fixable
Invitrogen™

Dextran, Alexa Fluor™ 568; 10,000 MW, Anionic, Fixable

Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división deMás información
Have Questions?
Número de catálogoCantidad
D22912
también denominado D-22912
5 mg
Número de catálogo D22912
también denominado D-22912
Precio (MXN)
-
Cantidad:
5 mg
Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división de células, registrar el movimiento de las células vivas e informar de las propiedades hidrodinámicas de la matriz citoplásmica. El dextrano etiquetado se introduce comúnmente en las células mediante microinyección.

¿Necesita otro espectro de emisión o un seguimiento más prolongado? Consulte nuestros otros productos de seguimiento de células de mamífero.

Especificaciones del dextrano:

Etiqueta (Ex/Em): Alexa Fluor™ 568 (578/603)
Tamaño: 10.000 PM
Carga: aniónica
Fijable: Fijable con aminas libres

Altos estándares de fabricación de dextranos de Molecular Probes™
Ofrecemos más de 50 conjugados de dextranos fluorescentes y biotinilados en diversos rangos de peso molecular. Los dextranos son polisacáridos hidrofílicos que se caracterizan por su peso molecular de alto a moderado, su buena solubilidad en agua y su baja toxicidad. También suelen tener baja inmunogenicidad. Los dextranos son biológicamente inertes debido a sus vínculos poli-(α-D-1,6-glucosa) poco comunes, que los hacen resistentes a la incisión por la mayoría de las glucosidasas celulares endógenas.

En la mayoría de los casos, los dextranos fluorescentes Molecular Probes™ son mucho más brillantes y tienen una mayor carga negativa que los dextranos disponible de otras fuentes. Además, utilizamos métodos rigurosos para eliminar todo el colorante no conjugado posible y, a continuación, probar nuestros conjugados de dextranos por cromatografía de capa fina para ayudar a garantizar la ausencia de contaminantes de bajo peso molecular.

Una amplia selección de sustituyentes y pesos moleculares
Los dextranos Molecular Probes™ se conjugan con biotina o una amplia variedad de fluoróforos, incluidos siete de nuestros colorantes Alexa Fluor™ (Conjugados de dextranos Molecular Probes, tabla 14.4) y están disponibles en estos pesos moleculares (PM) nominales: 3000; 10.000; 40.000; 70.000; 500.000 y 2.000.000 daltons.

Carga neta y capacidad de fijación del dextrano
Empleamos acoplamiento con succinimidilo de nuestros colorantes a la molécula de dextrano, que, en la mayoría de los casos, da lugar a un dextrano neutro o aniónico. La reacción usada para producir los dextranos Rhodamine Green™ y Alexa Fluor 488 hacen que el producto final sea neutro, aniónico o catiónico. Los dextranos Alexa Fluor, Cascade Blue, Lucifer Yellow, fluoresceína y Oregon Green son intrínsecamente aniónicos, mientras que la mayoría de los dextranos etiquetados con los tintes rodamina de zwiterión B, tetrametilrodamina y Texas Red™ son esencialmente neutros. Para producir más dextranos altamente aniónicos, hemos desarrollado un procedimiento exclusivo para agregar grupos con carga negativa a los portadores de dextranos; estos productos se denominan dextranos “polianiónicos”.

Algunas aplicaciones requieren que el trazador de dextranos se trate con formaldehído o glutaraldehído para su posterior análisis. Para estas aplicaciones, ofrecemos versiones que se pueden “fijar con lisina” de la mayoría de nuestros conjugados de dextranos de fluoróforos o biotina. Estos dextranos se han unido covalentemente residuos de lisina que permiten a conjugar los trazadores de dextranos con las biomoléculas circundantes mediante la fijación con aldehído para la detección posterior mediante técnicas imunohistoquímias y ultraestructurales. También hemos demostrado que 10.000 PM de conjugados de dextranos Alexa Fluor se pueden fijar con fijadores basados en aldehído.

Aplicaciones clave con dextranos etiquetados
Hay numerosas citas que describen el uso de dextranos etiquetados. Estos son algunos de los usos más comunes:

Rastreo neuronal (anterógrado y retrógrado) en células vivas
Rastreo de linaje celular en células vivas
Rastreo neuroanatómico
Investigación de las comunicaciones intercelulares (p. ej., en uniones de comunicación, durante la cicatrización de heridas y durante el desarrollo embrionario)
Investigación de la permeabilidad vascular y la integridad de la barrera hematoencefálica
Seguimiento de la endocitosis
Supervisión de la acidificación (algunos conjugados de dextranos son sensibles al pH)
Estudio de las propiedades hidrodinámicas de la matriz citoplasmática

Solo para uso en investigación. No diseñado para uso terapéutico o de diagnóstico en animales o humanos.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Etiqueta o tinteColorantes Alexa Fluor
Tipo de productoDextrano
Cantidad5 mg
Condiciones de envíoTemperatura ambiente
Excitation/Emission578/603 nm
Línea de productosAlexa Fluor
Unit SizeEach
Contenido y almacenamiento
Almacenar en el congelador (de -5 a -30 °C) y proteger de la luz.

Preguntas frecuentes

I can't see the structural details of neurons when I inject my fluorescent dextran. What can I do to improve the detailed structure?

If you want to see the most detailed structure you should use the low molecular weight conjugated dextrans such as the 3,000 MW dextrans.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Why isn't my fluorescently conjugated dextran signal retained after fixation?

Ensure that the dextran you are using is the fixable form (i.e., contains a primary amine). Dextrans that do not contain a primary amine will not be fixed. Another factor could be that the concentration of the dextran is too low, and the concentration use can be increased up to 10 mg/mL.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What are the charges of the dextrans?

We do not determine the net charge of the dextran conjugates. The net charge depends on the fluorophore used to label the dextran and the method of preparing the conjugate. We label some dextrans as neutral or anionic based on the fluorophore used, however the net charge of the dextran may not always be the same as the dye. The Alexa Fluor, Cascade Blue, Lucifer Yellow, fluorescein, and Oregon Green dextrans are intrinsically anionic, whereas most of the dextrans labeled with the zwitterionic Rhodamine B, tetramethylrhodamine and Texas Red dyes are essentially neutral.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What size dextran is best for neuronal tracing?

Dextrans with molecular weights from 3,000 to 70,000 have been used, however the 3,000 and 10,000 MW dextrans are most commonly used for neuronal tracing. The 3,000 MW dextrans are used for more detailed tracing of fine neuronal projections, investigating gap junctions, and diffuse more quickly; while the 10,000 MW dextrans have slower distribution, longer cellular retention, and do not cross gap junctions.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Do you have a neuronal tracing protocol?

The NeuroTrace BDA-10,000 Neuronal Tracer Kit (Cat. No. N7167) manual has a good protocol for injection procedures and neuronal tracing using the10,000 MW lysine-fixable biotin dextran amine (BDA). This protocol could potentially be applied to other fluorescent dextrans.

Please review Tables 1a and 1b on pages 4 and 5 - https://tools.thermofisher.com/content/sfs/manuals/mp07167.pdf

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (18)

Citations & References
Abstract
Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns.
Authors:Gahtan E, O'Malley DM
Journal:J Comp Neurol
PubMed ID:12640669
'We report here the pattern of axonal branching for 11 descending cell types in the larval brainstem; eight of these cell types are individually identified neurons. Large numbers of brainstem neurons were retrogradely labeled in living larvae by injecting Texas-red dextran into caudal spinal cord. Subsequently, in each larva a ... More
Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking.
Authors:Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, Jung JU,
Journal:Nat Cell Biol
PubMed ID:18552835
'Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the ... More
COPII-Golgi protein interactions regulate COPII coat assembly and Golgi size.
Authors:Guo Y, Linstedt AD
Journal:J Cell Biol
PubMed ID:16818719
'Under experimental conditions, the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum (ER), involving a rapid phase of growth followed by a return to steady state, but the mechanisms that control growth are unknown. Quantification of coat protein complex (COP) II assembly revealed a dramatic up-regulation at ... More
Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections.
Authors:van Rijnsoever C, Oorschot V, Klumperman J,
Journal:Nat Methods
PubMed ID:18974735
'The visualization of fluorescent proteins in living cells is a powerful approach to study intracellular dynamics. A limitation of fluorescence imaging, however, is that it lacks fine structural information; a fluorescent spot could represent an entire organelle, an organellar subdomain or even aggregates of proteins or membranes. These limitations can ... More
Automated organelle-based colocalization in whole-cell imaging.
Authors:Woodcroft BJ, Hammond L, Stow JL, Hamilton NA,
Journal:Cytometry A
PubMed ID:19746416
The use of fluorescence microscopy to investigate protein colocalization is an invaluable tool for understanding subcellular structures and their associated proteins. However, current techniques are largely limited to two-dimensional (2D) imaging and often require manual segmentation. Here, we present OBCOL, a methodology to automatically segment and quantify protein colocalization not ... More