DiD' oil; DiIC18(5) oil (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine Perchlorate)
DiD' oil; DiIC<sub>18</sub>(5) oil (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine Perchlorate)
Invitrogen™

DiD' oil; DiIC18(5) oil (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine Perchlorate)

La carbocianina lipofílica DiD con fluorescencia de rojo lejano es un analógico DiI de longitud de onda prolongada. Es aceiteMás información
Have Questions?
Número de catálogoCantidad
D30725 mg
Número de catálogo D307
Precio (MXN)
-
Cantidad:
25 mg
La carbocianina lipofílica DiD con fluorescencia de rojo lejano es un analógico DiI de longitud de onda prolongada. Es aceite a temperatura ambiente y débilmente fluorescente en agua, pero muy fluorescente y bastante fotoestable cuando se incorpora a membranas. Tiene un coeficiente de extinción extremadamente alto y tiempos de vida de estado excitado cortos (∼ 1 nanosegundo) en entornos lipídicos. Una vez aplicado a las células, el colorante se difunde lateralmente dentro de la membrana plasmática.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
ColorRojo
Método de detecciónFluorescente
Emisión665 nm
Intervalo de longitud de onda de excitación644 nm
Para utilizar con (equipo)Microscopio de fluorescencia
Peso molecular959.92
Cantidad25 mg
Condiciones de envíoTemperatura ambiente
Tipo de productoAceite DiD, aceite DiIC18(5)
SubCellular LocalizationMembranas celulares y lípidos, Lipids
Unit SizeEach
Contenido y almacenamiento
Almacenar a temperatura ambiente y proteger de la luz.

Preguntas frecuentes

I'm labeling live cells with Vybrant DiI or DiD lipophilic cyanine dyes. DiI gives a nice even membrane labeling, but DiD is more "spotty". What can be done?

This is expected. DiD (which is far-red fluorescent) is never as uniform as DiI (which is orange fluorescent). If uniformity is desired, try increasing the label time and concentration, but it still isn't likely to be as uniform as DiI. CellMask Deep Red Plasma Membrane stain is much more uniform and is about the same wavelength as DiD. However, if you intend to do cell tracking over days, CellMask stain has not been tried for that application.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I stained my cells with a lipophilic cyanine dye, like DiI, but the signal was lost when I tried to follow up with antibody labeling. Why?

Since these dyes insert into lipid membranes, any disruption of the membranes leads to loss of the dye. This includes permeabilization with detergents like Triton X-100 or organic solvents like methanol. Permeabilization is necessary for intracellular antibody labeling, leading to loss of the dye. Instead, a reactive dye such as CFDA SE should be used to allow for covalent attachment to cellular components, thus providing for better retention upon fixation and permeabilization.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

How long does it take for lipophlic tracers to transport along the membrane? How much faster are the FAST lipophilic dyes?

The transport is fairly slow, around 6 mm/day in live tissue and slower in fixed tissue, so diffusion of lipophilic carbocyanine tracers from the point of their application to the terminus of a neuron can take several days to weeks The FAST DiO and DiI analogs (which have unsaturated alkyl tails) can improve transport rate by around 50%.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Which form of the lipophilic tracers (DiO, DiI, DiD, etc) should I use?

Select the dye that is compatible with your available excitation source(s) and emission filter set/channels. The solid, paste and crystal forms can be applied directly to neurons in tissues. For labeling cells in culture or microinjection, the lipophilic dyes in solution or solid form can be used.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I want to label two cell populations and then perform a cell fusion assay. Which reagents are best for imaging this?

Lipophilic cyanine dyes are preferred for this sort of assay, since they insert into cellular membranes and then, upon fusion, are shared by the fused cells as the membranes are shared. For example, one cell population can be labeled with DiI (orange-red) and another cell population can be labeled with DiO (green), and when the cells fuse, the combined color appears yellow (when imaged with a dual-bandpass filter set).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (69)

Citations & References
Abstract
Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks.
Authors:Kamoun WS, Chae SS, Lacorre DA, Tyrrell JA, Mitre M, Gillissen MA, Fukumura D, Jain RK, Munn LL,
Journal:Nat Methods
PubMed ID:20581828
Not all tumor vessels are equal. Tumor-associated vasculature includes immature vessels, regressing vessels, transport vessels undergoing arteriogenesis and peritumor vessels influenced by tumor growth factors. Current techniques for analyzing tumor blood flow do not discriminate between vessel subtypes and only measure average changes from a population of dissimilar vessels. We ... More
Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis.
Authors:Servant G, Weiner OD, Neptune ER, Sedat JW, Bourne HR
Journal:Mol Biol Cell
PubMed ID:10198064
'Persistent directional movement of neutrophils in shallow chemotactic gradients raises the possibility that cells can increase their sensitivity to the chemotactic signal at the front, relative to the back. Redistribution of chemoattractant receptors to the anterior pole of a polarized neutrophil could impose asymmetric sensitivity by increasing the relative strength ... More
Regulation of C-cadherin function during activin induced morphogenesis of Xenopus animal caps.
Authors:Brieher WM, Gumbiner BM
Journal:J Cell Biol
PubMed ID:8034750
'Treatment of Xenopus animal pole tissue with activin results in the induction of mesodermal cell types and a dramatic elongation of the tissue. The morphogenetic movements involved in the elongation appear similar to those in normal gastrulation, which is driven by cell rearrangement and cell intercalations. We have used this ... More
Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy.
Authors:Evans CL, Potma EO, Puoris'haag M, Côté D, Lin CP, Xie XS
Journal:Proc Natl Acad Sci U S A
PubMed ID:16263923
'Imaging living organisms with molecular selectivity typically requires the introduction of specific labels. Many applications in biology and medicine, however, would significantly benefit from a noninvasive imaging technique that circumvents such exogenous probes. In vivo microscopy based on vibrational spectroscopic contrast offers a unique approach for visualizing tissue architecture with ... More
In vivo migration of dendritic cells differentiated in vitro: a chimpanzee model.
Authors:Barratt-Boyes SM, Watkins SC, Finn OJ
Journal:J Immunol
PubMed ID:9144465
'Dendritic cells with potent Ag-presenting function can be propagated from peripheral blood using recombinant cytokines, and these cells have potential usefulness as immunotherapeutic agents in the treatment of cancer and other disease states. However, it is not known if these in vitro differentiated dendritic cells have the capacity to migrate ... More