BLOCK-iT™ U6 RNAi Entry Vector Kit
Product Image
Invitrogen™

BLOCK-iT™ U6 RNAi Entry Vector Kit

El vector de entrada de ARNi BLOCK-iT™ U6 proporciona un enfoque sencillo y optimizado para la clonación de secuencias deMás información
Have Questions?
Número de catálogoCantidad
K49450020 construcciones
Número de catálogo K494500
Precio (MXN)
-
Cantidad:
20 construcciones
El vector de entrada de ARNi BLOCK-iT™ U6 proporciona un enfoque sencillo y optimizado para la clonación de secuencias de ARN de horquilla corta (ARNhc) para la realización de pruebas en transfecciones transitorias para la interferencia de ARN (ARNi), una técnica preferida para analizar la regulación a la baja de genes. Un proceso de clonación fácil coloca un ADN oligonucleótido de ∼50 bp inmediatamente después de un promotor tipo U6 pol III (Figura 1). La expresión de este cassette de ARNi forma una molécula de ARNhc en la célula que se procesará y actuará como ARN de interferencia pequeña (ARNip) que generará el efecto de ARNi.

Entrega del cassette de ARNi U6
Una vez que la clonación se ha completado, el vector de entrada U6 está listo para usarse inmediatamente en transfecciones transitorias utilizando un reactivo como Lipofectamine™ 2000. Esto hace que este sistema sea ideal para la detección inicial de ARNhc en muchos tipos de células de mamíferos. Como alternativa en los tipos de células difíciles de transfectar o sin división, o para entregar a sistemas de modelos animales, el cassette de ARNi puede recombinarse fácilmente en un vector de ARNi viral BLOCK-iT™. Para la entrega y expresión lentiviral de ARNhc estables, vuelva a combinar el vector de entrada BLOCK-iT™ U6 con el vector de ARNi pLenti6/BLOCK-iT™. Para la administración transitoria a tipos de células complicados usando transducción adenoviral, vuelva a combinar con el vector de ARNi pAd/BLOCK-iT™.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Método de clonaciónGateway™
Sistema constitutivo o inducibleConstitutivo
Tipo de entregaTransfección
Línea de productosBLOCK-iT
Tipo de productoKit de vectores de entrada de ARNi
Cantidad20 construcciones
Tipo de RNAiARNhc
VectorVectores de ARNi BLOCK-iT
FormatoKit
PromotorU6
Unit SizeEach
Contenido y almacenamiento
El kit de vectores de entrada BLOCK-iT™ U6 contiene dos cajas. La caja de clonación contiene cuatro tubos de vector linealizado a 5 ng/tubo, suficiente para completar 5 reacciones de clonación por tubo. También se incluyen 250 µl de tampón de recocido 10X, 20 µl de ligasa de ADN T4, 80 µl de tampón de ligasa de ADN 5X, 1,4 ng de oligo de control lacZ, 10 µl de plásmido de control lacZ liofilizado, 1,5 ml de agua libre de ADNasa/ARNasa, y 2 µg cada uno de primer de secuenciación directo e inverso. Almacene los vectores, tampones, oligos de control y plásmidos, agua y primers de secuenciación a -20 °C. La caja One Shot™ contiene reactivos de transformación que incluyen 21 alícuotas de 50 µl de E. coli químicamente competente TOP10 One Shot™, medio S.O.C. y un plasmídico de control superenrollado pUC19. Almacenar a - 80 °C. Se garantiza la estabilidad de todos los reactivos durante 6 meses si se almacenan correctamente.

Preguntas frecuentes

Can I use any Gateway entry vector to generate entry clones for use in RNAi applications?

No, you should use an entry vector that contains the elements necessary for RNA Polymerase III-dependent expression of your shRNA (i.e., Pol III promoter and terminator).

What is a dose response curve or kill curve? And can you outline the steps involved?

A dose response curve or kill curve is a simple method for determining the optimal antibiotic concentration to use when establishing a stable cell line. Untransfected cells are grown in a medium containing antibiotic at varying concentrations in order to determine the lowest amount of antibiotic needed to achieve complete cell death. The basic steps for performing a dose response curve or kill curve are as follows:

- Plate untransfected cells at 25% confluence, and grow them in a medium containing increasing concentrations of the antibiotic. For some antibiotics, you will need to calculate the amount of active drug to control for lot variation.
- Replenish the selective medium every 3-4 days. After 10-12 days, examine the dishes for viable cells. The cells may divide once or twice in the selective medium before cell death begins to occur.
- Look for the minimum concentration of antibiotic that resulted in complete cell death. This is the optimal antibiotic concentration to use for stable selection.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Can I create stable cell lines using pENTR/U6 entry vector or the pENTR/H1/TO vector?

Unfortunately, the pENTR/U6 vector does not contain a selection marker; therefore, only transient RNAi analysis may be performed. If you wish to generate stable cell lines, perform an LR reaction into an appropriate Gateway destination vector to generate expression clones.
The pENTR/H1/TO vector contains the Zeocin resistance gene to facilitate generation of cell lines that inducbily express the shRNA of interest. Perform a kill curve to determine the minimum concentration of Zeocin that is required to kill your untransfected mammalian cell line. Please note that Zeocin-sensitive cells do not round up and detach from the plate, but rather may increase in size, show abnormal cell shape, display presence of large empty vesicles in the cytoplasm, or show breakdown of plasma/nuclear membranes.

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.

What loop sequence should I use when designing my shRNA for cloning? Do you have any guidelines I should follow?

You can use a loop sequence of any length ranging from 4 to 11 nucleotides, although short loops (i.e., 4-7 nucleotides) are generally preferred. Avoid using a loop sequence containing thymidines (Ts), as they may cause early termination. This is particularly true if the target sequence itself ends in one or more T nucleotides. Here are some loop sequences we recommend:

- 5' - CGAA - 3'
- 5' - AACG - 3'
- 5' - GAGA - 3'

What considerations regarding transcription initiation should I take when designing my shRNA for cloning?

Transcription of the shRNA initiates at the first base following the end of the U6 promoter sequence. In the top-strand oligo, the transcription initiation site corresponds to the first nucleotide following the 4 bp CACC sequence added to permit directional cloning. We recommend initiating the shRNA sequence at a guanosine (G) because transcription of the native U6 snRNA initiates at a G. Note the following:

- If G is part of the target sequence, then incorporate the G into the stem sequence in the top-strand oligo and add a complementary C to the 3' end of the top-strand oligo.
- If G is not the first base of the target sequence, we recommend adding a G to the 5' end of the top-strand oligo directly following the CACC overhang sequence. In this case, do not add the complementary C to the 3' end of the top-strand oligo. Note: We have found that adding the complementary C in this situation can result in reduced activity of the shRNA. Alternative, if use of a G to initiate transcription is not desired, use an adenosine (A) rather than C or T. Note, however, that use of any nucleotide other than G may affect initiation efficiency and position.

Citations & References (2)

Citations & References
Abstract
RNAi specificity: how big of an issue is it?
Authors:Samarsky DA, Welch PJ,
Journal:Pharmacogenomics
PubMed ID:15723598
RNAi techniques hold great promise for science, from basic research all the way to human therapeutics, and our understanding of the underlying mechanisms have allowed us to design better and more effective compounds. Fortunately, much has also been learned about nonspecific effects, such as off-target and stress responses. These observations and discoveries have led us to improved specificity ... More
Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes.
Authors:Guan HP, Ishizuka T, Chui PC, Lehrke M, Lazar MA,
Journal:Genes Dev
PubMed ID:15681609
Peroxisome proliferator-activated receptor gamma (PPARgamma) is the master regulator of adipogenesis as well as the target of thiazolidinedione (TZD) antidiabetic drugs. Many PPARgamma target genes are induced during adipogenesis, but others, such as glycerol kinase (GyK), are expressed at low levels in adipocytes and dramatically up-regulated by TZDs. Here, we ... More