LanthaScreen™ Tb Emission Filters, 15 mm
Product Image

LanthaScreen™ Tb Emission Filters, 15 mm

Un conjunto de dos filtros de emisión (diámetro = 15 mm) para su uso con los ensayos y productos LanthaScreen™Más información
Have Questions?
Número de catálogoPara utilizar con (equipo)
PV00315Lector de microplacas
Número de catálogo PV00315
Precio (MXN)
-
Para utilizar con (equipo):
Lector de microplacas
Un conjunto de dos filtros de emisión (diámetro = 15 mm) para su uso con los ensayos y productos LanthaScreen™ Tb: Filtro de 495 nm con paso de banda de 10 nm y filtro de 520 nm con ancho de banda de 25 nm.

Para usar principalmente con el lector de placas Perkin Elmer EnVision™. Los soportes de filtros vacíos Perkin Elmer EnVision™ son necesarios para montar los filtros (n.º de cat. de Perkin Elmer 2100-8110, 10 soportes de filtros vacíos con código de barras para filtros personalizados más anillos de bloqueo).

Si necesita ayuda para configurar su instrumento, póngase en contacto con nuestro equipo de asistencia técnica en Norteamérica a través del +1 760 603 7200, x40266.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Diámetro (métrico)15 mm
Excitación/emisión495/520 nm
Tipo de etiquetaQuelatos de lantánidos
Línea de productosLanthaScreen
Cantidad2 filters
Condiciones de envíoTemperatura ambiente
Para utilizar con (equipo)Lector de microplacas
Tipo de productoFiltro de emisión
Unit SizeEach
Contenido y almacenamiento
Conjunto de dos filtros, enviados y almacenados a temperatura ambiente

Preguntas frecuentes

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).