Quelato Tb reactivo a aminas de LanthaScreen™
Product Image

Quelato Tb reactivo a aminas de LanthaScreen™

Como parte de la caja de herramientas LanthaScreen® TR-FRET de reactivos de ensayo, el reactivo de etiquetado de quelato TbMás información
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidad
PV3582100 μg
PV358310 μg
PV35811 mg
Número de catálogo PV3582
Precio (MXN)
-
Cantidad:
100 μg
Como parte de la caja de herramientas LanthaScreen® TR-FRET de reactivos de ensayo, el reactivo de etiquetado de quelato Tb reactivo a aminas LanthaScreen® está disponible para el desarrollo de ensayos. El grupo de isotiocianato, reactivo a la amina, se conjuga con prácticamente cualquier péptido o proteína que contenga una o más de las aminas accesibles, como el grupo de aminas que se encuentra en un residuo de lisina o un grupo de aminas N-terminal no modificado de un péptido o proteína. También se pueden etiquetar los oligonucleótidos de ADN modificados con amina. La transferencia de energía del donante de terbio a un aceptor adecuado, como la fluoresceína, se detecta fácilmente mediante el control de un aumento de la intensidad de fluorescencia del aceptor. Consulte la guía del usuario para conocer los protocolos basados en aplicaciones para el etiquetado de péptidos que contienen grupos aminos libres, oligonucleótidos modificados con aminas y anticuerpos IgG.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Tipo de productoQuelato de Tb reactivo a aminas
Cantidad100 μg
Condiciones de envíoHielo seco
Línea de productosLanthaScreen
Unit SizeEach
Contenido y almacenamiento
Los reactivos de etiquetado LanthaScreen™ TR-FRET se suministran liofilizados. Deben almacenarse a -20 °C, con desecante y protegidos de la luz. Después de la reconstitución, los quelatos de terbio lantanida deben almacenarse en hielo y usarse en el mismo día.

Preguntas frecuentes

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).