LanthaScreen™ TR-FRET PPAR gamma Coactivator Assay Kit, goat
Product Image

LanthaScreen™ TR-FRET PPAR gamma Coactivator Assay Kit, goat

Este kit contiene anticuerpo TB-Anti-GST de cabra; los otros componentes del kit son los mismos que los del kit A15126:Más información
Have Questions?
Número de catálogoCantidad
PV4548800 ensayos de 20 μL
Número de catálogo PV4548
Precio (MXN)
-
Cantidad:
800 ensayos de 20 μL
Este kit contiene anticuerpo TB-Anti-GST de cabra; los otros componentes del kit son los mismos que los del kit A15126:

el kit de ensayo de coactivador gamma LanthaScreen™ TR-FRET PPAR proporciona un método sensible y robusto para la detección de alto rendimiento de los potenciales ligandos gamma PPAR como agonistas o antagonistas del reclutamiento de coactivadores dependientes de ligandos. El kit utiliza un anticuerpo anti-GST marcado con terbio (Tb), un péptido coactivador marcado con fluoresceína y un receptor gamma activado por proliferadores de peroxisoma (PPAR gamma-LBD) que se etiqueta con glutatión-S-transferasa (GST) en un formato de ensayo homogéneo de mezcla y lectura.

Modo agonista:
para ejecutar el ensayo de coactivador LanthaScreen™ TR-FRET del receptor gamma activado por proliferadores de peroxisoma en modo agonista (para identificar compuestos agonistas), se añade PPAR gamma-LBD a los compuestos de ensayo de ligando, seguido de la adición de una mezcla de péptido coactivador de fluoresceína y anticuerpo Tb-anti-GST. Después de un periodo de incubación a temperatura ambiente, se calcula la relación de emisión TR-FRET 520:495 y se utiliza para determinar la EC50 a partir de una curva dosis-respuesta del compuesto. Basado en la biología de la interacción del péptido gamma-coactivador PPAR, este ligando EC50 es un valor compuesto que representa la cantidad de ligando necesaria para unirse al receptor, efectuar un cambio conformacional y reclutar el péptido coactivador (figura 1).

Modo antagonista:
cuando se ejecuta el ensayo de coactivador LanthaScreen™ TR-FRET del receptor gamma activado por proliferadores de peroxisoma en modo antagonista (para identificar compuestos antagonistas), se añade PPAR gamma-LBD a los compuestos de ensayo de ligando, seguido de la adición de una mezcla de péptido coactivador de fluoresceína agonista y anticuerpo Tb-anti-GST. La concentración de agonista utilizada en este modo es la concentración de EC80 determinada por la primera ejecución del ensayo en modo agonista (figura 2).

Contenido y almacenamiento:
El kit de ensayo de coactivador LanthaScreen™ TR-FRET PPARγ contiene proteína PPAR gamma-LBD (GST), péptido coactivador TRAP220/DRIP-2 marcado con fluorescencia, anticuerpo Tb-anti-GST y tampones. Almacene los componentes como se indica en el protocolo del ensayo (-80 °C, -20 °C o +4 °C).
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Entrada del ensayoInteracción del corregulador bioquímico
Método de detecciónFluorescente
Para utilizar con (aplicación)Ensayo de interacción de cofactores, TR-FRET
Para utilizar con (equipo)Lector de microplacas
ID de gen (Entrez)5468
LigandoPPAR Gamma
No. of Assays800 x 20 μL assays
EnvasePlaca de 384 pocillos
Tipo de productoKit de ensayo de coactivadores TR-FRET PPAR Gamma
Cantidad800 ensayos de 20 μL
Presentación de datosPunto final
Condiciones de envíoHielo seco
Entrada dianaPPARG, PPAR gamma, NR1C3
ConjugadoTb (terbio)
Línea de productosLanthaScreen
Unit SizeEach
Contenido y almacenamiento
Almacenar en congelador ultrafrío (entre - 68 y - 85 °C).

Preguntas frecuentes

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).

Citations & References (3)

Citations & References
Abstract
Amorfrutins are potent antidiabetic dietary natural products.
Authors:Weidner C, de Groot JC, Prasad A, Freiwald A, Quedenau C, Kliem M, Witzke A, Kodelja V, Han CT, Giegold S, Baumann M, Klebl B, Siems K, Müller-Kuhrt L, Schürmann A, Schüler R, Pfeiffer AF, Schroeder FC, Büssow K, Sauer S,
Journal:Proc Natl Acad Sci U S A
PubMed ID:22509006
'Given worldwide increases in the incidence of obesity and type 2 diabetes, new strategies for preventing and treating metabolic diseases are needed. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a central role in lipid and glucose metabolism; however, current PPARγ-targeting drugs are characterized by undesirable side effects. Natural ... More
Simultaneous monitoring of discrete binding events using dual-acceptor terbium-based LRET.
Authors:Kupcho KR, Stafslien DK, DeRosier T, Hallis TM, Ozers MS, Vogel KW,
Journal:J Am Chem Soc
PubMed ID:17929812
Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions.
Authors:Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NK, Woodcock SR, Golin-Bisello F, Motanya UN, Li Y, Zhang J, Garcia-Barrio MT, Rudolph TK, Rudolph V, Bonacci G, Baker PR, Xu HE, Batthyany CI, Chen YE, Hallis TM, Freeman BA,
Journal:J Biol Chem
PubMed ID:20097754
The peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARgamma ... More