Qdot™ 585 Streptavidin Conjugate
Qdot™ 585 Streptavidin Conjugate
Invitrogen™

Qdot™ 585 Streptavidin Conjugate

El conjugado de estreptavidina Qdot™ 585 se compone de una proteína de unión de biotina (estreptavidina) unida por enlace covalenteMás información
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidad
Q10111MP200 μl
Q10113MP50 μl
Número de catálogo Q10111MP
Precio (MXN)
-
Cantidad:
200 μl
El conjugado de estreptavidina Qdot™ 585 se compone de una proteína de unión de biotina (estreptavidina) unida por enlace covalente a una etiqueta fluorescente (nanocristal Qdot™). La estreptavidina tiene una afinidad muy alta por la biotina, y el conjugado de estreptavidina suele utilizarse junto con el conjugado de biotina para la detección específica de una serie de proteínas, motivos de proteínas, ácidos nucleicos y otras moléculas (p. ej., un anticuerpo primario biotinilado unido a una proteína diana se puede detectar con una estreptavidina marcada con fluorescencia). Este tipo de estrategias se emplean en muchos protocolos de detección, entre los que se encuentran las inmunotransferencias (Western blots), la citometría de flujo, la adquisición de imágenes y la microscopía, los ensayos de microplacas, y también en flujos de trabajo de purificación para lograr el fraccionamiento deseado. Los conjugados de nanocristales Qdot™ se suministran como soluciones de 1 µM.

Características importantes de los conjugados de estreptavidina Qdot™:
El conjugado de estreptavidina Qdot™ 585 tiene un máximo de emisión de ∼585 nm aprox.
Cada nanocristal Qdot™ contiene aproximadamente de 5 a 10 estreptavidinas
Fluorescencia muy fotoestable e intensa
Se excitan de forma eficaz con fuentes de excitación de una sola línea
Emisión estrecha, gran corrimiento de Stokes
Disponibles en varios colores
Ideal para inmunotransferencias (Western blot), citometría de flujo, adquisición de imágenes y microscopía, ensayos en microplacas y mucho más

Propiedades de los nanocristales Qdot™
El conjugado de estreptavidina Qdot™ tiene el tamaño de una macromolécula o proteína grande (∼15–20 nm aprox.) y representa la clase más brillante de reactivos de detección de estreptavidina. Los conjugados de estreptadivina Qdot™ están hechos de un cristal de tamaño nanométrico de un material semiconductor (CdSe) recubierto con una cáscara semiconductora adicional (ZnS) para mejorar las propiedades ópticas del material. Los conjugados de estreptavidina Qdot™ 705 y Qdot™ 800, que incluyen CdSeTe, están hechos de forma similar. A su vez, el material del «núcleo-cáscara» está recubierto con una capa de polímeros que permite que los materiales se conjuguen con moléculas biológicas y conserven sus propiedades ópticas.

Otros conjugados fluorescentes de estreptavidina disponibles
Puede elegir entre diversos colores Qdot™ o probar el kit de muestreo de estreptavidina Qdot™, que contiene conjugados de estreptavidina Qdot™ en seis colores (525, 565, 585, 605, 655 y 705). Además de conjugados de nanocristales, ofrecemos una amplia gama de estreptavidinas conjugadas con colorantes Alexa Fluor™, colorante Oregon Green™, conjugados de enzimas y fluoróforos tradicionales como el colorante Texas Red™ o la fluoresceína (FITC), entre otros.

Busque conjugados biotinilados
También ofrecemos una amplia gama de conjugados biotinilados para utilizar con los sistemas de detección de biotina-estreptavidina.
• Utilice la herramienta de búsqueda de anticuerpos primarios para encontrar anticuerpos primarios biotinilados
• Utilice la herramienta de selección de anticuerpos secundarios para encontrar anticuerpos secundarios biotinilados y anticuerpos antihaptenos y anticolorantes biotinilados

Bloqueo de la biotina endógena
Las biotinas naturales pueden interferir con los sistemas de detección de biotina-estreptavidina. Para los experimentos con células fijadas y permeabilizadas, pruebe nuestro kit de bloqueo de biotina endógena para minimizar esta interferencia.

Para uso exclusivo en investigación. No diseñado para uso terapéutico o de diagnóstico en animales o humanos.

Enlaces relacionados:

Más información sobre la detección de avidina-biotina

Más información sobre los nanocristales Qdot™

Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.

Especificaciones
Concentración1 μM
Tipo de productoConjugado de estreptavidina (fluorescente)
Cantidad200 μl
Condiciones de envíoTemperatura ambiente
ConjugadoQdot 585
FormularioLíquido
Línea de productosQdot
Unit SizeEach
Contenido y almacenamiento
Almacenar en el refrigerador (2–8° C).

Preguntas frecuentes

I am getting very high background with my Qdot streptavidin conjugate. Do you have any suggestions?

Here are some suggestions: Use the Qdot Incubation Buffer (Cat. No. Q20001MP). The included buffer is formulated specifically for improved signal-to-background ratios in most immunolabeling applications using the Qdot streptavidin conjugates. Alternate buffers may result in more variable staining and, in particular, may increase background staining. However, some specific applications may require other buffer conditions. Please see the protocol "Double-labeling Using Qdot Streptavidin conjugates."
Determine if the sample has a high level of endogenous biotin. Block the sample using an avidin-biotin pre-blocking step.
If you have used the Qdot Incubation Buffer and still get high nonspecific background, then it may be necessary to check other steps of your procedure. Blocking the sample with BSA or normal animal serum will generally decrease nonspecific binding of both antibodies and Qdot streptavidin conjugates. It is a good practice to dilute your primary and secondary antibodies in the blocking buffer. Some tissues such as spleen and kidney sections may contain endogenous biotin, which may contribute to non-specific signal. Endogenous biotin can be blocked with an avidin/biotin blocking kit (Cat. No. E21390).
Grainy staining or clumps of fluorescent material appear in the background.
Occasionally the BSA within the Qdot Incubation Buffer shows slight aggregation over time. It is necessary to remove this aggregate prior to labeling the sample with the Qdot streptavidin conjugate. Spin down the incubation mixture before addition to the sample. This can be accomplished by spinning the samples in a benchtop centrifuge (Eppendorf 5415) at 5,000 x g for 2 minutes. The material can also be passed over a 0.2 µm spin filter unit before you add it to the sample for staining to remove microscopic precipitates. If you are using a buffer that is different than the Qdot Incubation Buffer, this behavior can often be attributed to higher levels of NaCl or other salts in the incubation buffer, and may not be easily fixed with filtration. In this case, reduce the overall salt concentration.
Optimize concentration of biotinylated secondary antibodies.
Optimizing specific signal can often be achieved by adjusting the level of biotinylated antibody used instaining. High levels of biotinylated antibody are necessary to obtain specific labeling, but overly high levels will contribute to nonspecific binding of the antibody to the sample. Nonspecifically bound biotinylated antibody will bind to the Qdot streptavidin conjugate, resulting in higher staining of the background.
Optimize concentration of Qdot streptavidin conjugate.
Just as titration of primary and secondary antibodies is necessary to achieve optimal specific signal in immunolabeling applications, the level of the final probe should be optimized for each conjugate. In general, concentrations at or slightly below saturation should have the optimal signal-to-background ratio, while concentrations substantially higher than saturation will compromise the assay with higher background levels.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am getting no signal with my Qdot streptavidin conjugate. What should I do?

Here are some suggestions:

Confirm imaging/detection setup suitability.
Make sure that you are using an appropriate filter set to detect the signal. Please consult Table 1 in the Qdot Biotin User Manual for a list of appropriate and optimal filters.
Check to see that Qdot conjugate is fluorescing using an alternative light source.
Qdot conjugates will normally fluoresce brightly under a hand-held ultraviolet lamp (long wave, such as the type used to visualize ethidium bromide on agarose gels). Although we have not seen pronounced loss of fluorescence of these materials under any storage conditions that we have investigated, we have not been able to examine all storage conditions. If the Qdot product does not appear to fluoresce under the long wave UV excitation, please contact Technical Support at techsupport@qdots.com. For a microscope, perform a spot test: place a small droplet (2 to 5 µL) of the quantum dot solution onto a clean slide (no coverslip) and examine under the appropriate filter set at low magnification.
Confirm the specificity and titer of primary antibody.
Make sure the antibody will recognize the intended targets. Make sure there is sufficient primary antibody bound to the targets. This verification can be performed by ELISA-based capture of the antigen of interest, or by other techniques that can be found in lab manuals such as the Current Protocols in Immunology.
For Qdot streptavidin conjugates, confirm biotinylation of antibody.
Make sure your antibodies are effectively biotinylated. It may be necessary to independently adjust the concentration of both the primary and secondary antibodies used in the assay to obtain optimal signal and minimal background.
PAP pen ink may quench signal.
Use an alternate method for isolating target areas on the slide. If your protocol requires the use of a PAP pen, we recommend the ImmEdge Hydrophobic Barrier Pen (Cat. No. H-4000) from Vector Labs.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What is the best way to remove white precipitate from my ITK Qdot nanocrystals?

Spinning your ITK Qdot nanocrystals at approximately 3,000 rpm for 3-5 minutes should remove the white precipitate from the supernatant. Use the supernatant immediately.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I see a white precipitate in my ITK Qdot nanocrystals; should I be concerned?

The precipitate in the organic ITK Qdot nanocrystals occurs with some frequency. The ITK Qdot nanocrystals sometimes include impurities that show as a white precipitate.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Why do my Qdot nanocrystals appear to be blinking?

Blinking is an inherent property of quantum dots; in fact, all single-luminescent molecules blink, including organic dyes. The brightness and photostability of Qdot nanocrystals makes the blinking more visibly apparent. Under higher energy excitation, Qdot nanocrystals blink even faster.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (18)

Citations & References
Abstract
Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers.
Authors:Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, Castermans E, Thor Straten P, Blank C, Haanen JB, Heemskerk MH, Schumacher TN,
Journal:Nat Methods
PubMed ID:19543285
'The use of fluorescently labeled major histocompatibility complex multimers has become an essential technique for analyzing disease- and therapy-induced T-cell immunity. Whereas classical major histocompatibility complex multimer analyses are well-suited for the detection of immune responses to a few epitopes, limitations on human-subject sample size preclude a comprehensive analysis of ... More
Single-molecule quantum-dot fluorescence resonance energy transfer.
Authors:Hohng S, Ha T
Journal:Chemphyschem
PubMed ID:15884082
'Colloidal semiconductor quantum dots are promising for single-molecule biological imaging due to their outstanding brightness and photostability. As a proof of concept for single-molecule fluorescence resonance energy transfer (FRET) applications, we measured FRET between a single quantum dot and a single organic fluorophore Cy5. DNA Holliday junction dynamics measured with ... More
Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.
Authors:Telford WG
Journal:Cytometry A
PubMed ID:15351984
'INTRODUCTION: Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser ... More
The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy.
Authors:Wu Y, Campos SK, Lopez GP, Ozbun MA, Sklar LA, Buranda T
Journal:Anal Biochem
PubMed ID:17397793
'The use of fluorescence calibration beads has been the hallmark of quantitative flow cytometry. It has enabled the direct comparison of interlaboratory data as well as quality control in clinical flow cytometry. In this article, we describe a simple method for producing color-generalizable calibration beads based on streptavidin functionalized quantum ... More
Quantum dot self-assembly for protein detection with sub-picomolar sensitivity.
Authors:Soman CP, Giorgio TD,
Journal:Langmuir
PubMed ID:18335969
'A novel approach to sensitive and rapid antigen detection is described. In the presence of a specific antigen, quantum dot-antibody conjugates rapidly self-assemble into agglomerates that are typically more than 1 order of magnitude larger than their individual components. The size distribution of the agglomerated colloids depends on, among other ... More