CD274 (PD-L1, B7-H1) Monoclonal Antibody (MIH1), APC, eBioscience™

Product Details

- **Size**: 100 Tests
- **Species Reactivity**: Human
- **Published Species**: Human
- **Host/Isotope**: Mouse / IgG1, kappa
- **Recommended Isotype Control**: Mouse IgG1 kappa Isotype Control (P3.6.2.8.1), APC, eBioscience™
- **Class**: Monoclonal
- **Type**: Antibody
- **Clone**: MIH1
- **Conjugate**: APC
- **Form**: Liquid
- **Concentration**: 5 µL/Test
- **Purification**: Affinity chromatography
- **Storage buffer**: PBS, pH 7.2, with 0.1% gelatin, 0.2% BSA
- **Contains**: 0.09% sodium azide
- **Storage Conditions**: 4° C, store in dark, DO NOT FREEZE!
- **RRID**: AB_10597586

Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Tested Dilution</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Cytometry (Flow)</td>
<td>5 µL (0.5 µg)/test</td>
<td>10 Publications</td>
</tr>
<tr>
<td>Functional Assay (FN)</td>
<td>-</td>
<td>2 Publications</td>
</tr>
<tr>
<td>Immunocytochemistry (ICC)</td>
<td>-</td>
<td>1 Publication</td>
</tr>
<tr>
<td>Immunofluorescence (IF)</td>
<td>-</td>
<td>1 Publication</td>
</tr>
<tr>
<td>Immunohistochemistry (Frozen) (IHC (F))</td>
<td>-</td>
<td>2 Publications</td>
</tr>
<tr>
<td>Western Blot (WB)</td>
<td>-</td>
<td>1 Publication</td>
</tr>
</tbody>
</table>

Product Specific Information

Description: The MIH1 monoclonal antibody reacts with human B7-H1, also known as PD-L1. B7-H1, a member of the B7 family, has a predicted molecular weight of approximately 40 kDa and belongs to the Ig superfamily. B7-H1 is expressed on a majority of leukocytes. B7-H1 is a ligand for PD-1. Interaction of PD-1 with either PD-L1 (B7-H1) or PD-L2 (B7-DC) results in inhibition of T and B cell responses. MIH1 is reported to be a blocking antibody.

Applications Reported: This MIH1 antibody has been reported for use in flow cytometric analysis.

Applications Tested: This MIH1 antibody has been pre-titrated and tested by flow cytometric analysis of normal human peripheral blood cells. This can be used at 5 µL (0.5 µg) per test. A test is defined as the amount (µg) of antibody that will stain a cell sample...
in a final volume of 100 µL. Cell number should be determined empirically but can range from 10^5 to 10^8 cells/test.

Filtration: 0.2 µm post-manufacturing filtered.

Product Images For CD274 (PD-L1, B7-H1) Monoclonal Antibody (MIH1), APC, eBioscience™

CD274 (PD-L1, B7-H1) Antibody (17-5983-42) in Flow
Staining of unstimulated (left) or PHA-stimulated (right) normal human peripheral blood cells with Mouse IgG1 K Isotype Control APC (Product # 17-4714-81) (blue histogram) or Anti-Human CD274 (B7-H1) APC (purple histogram). Viable cells in the lymphocyte gate, as determined by Fixable Viability Dye eFluor® 520 (Product # 65-0867-14), were used for analysis.
Cancer immunology research

Correlation of PD-L1 Surface Expression on Leukemia Cells with the Ratio of PD-L1 mRNA Variants and with Electrophoretic Mobility.

"17-5983 was used in Western blot to show that the expression of PD-L1 on the surface of leukemic and normal hematopoietic cells correlates with the ratio of mRNA variant 1 to variant 2."

Authors: Brodská B, Otevelová P, Kuželová K

CA-170 - A Potent Small-Molecule PD-L1 Inhibitor or Not?

Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression.

"17-5983 was used in Flow cytometry to investigate the molecular characteristics of T-cell infiltration in primary neuroblastomas as an indicator of pre-existing immune responses and potential responsiveness to checkpoint inhibition."

High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer.

"17-5983 was used in Immunocytochemistry-immunoflourescence to investigate the microenvironment of tumour-draining lymph nodes of patients with cervical cancer."

Authors: Heeren AM, Koster BD, Samuels S, Ferns DM, Chondronasiou D, Kenter GG, Jordanova ES, de Gruijl TD