Cytochrome C Monoclonal Antibody (2B5), eBioscience ${ }^{\text {TM }}$

Product Details	
Size	$100 \mu \mathrm{~g}$
Species Reactivity	Human
Published Species	Human
Host/lsotype	Mouse / lgG2a
Class	Monoclonal
Type	Antibody
Clone	2 B5
Conjugate	Unconjugated
Immunogen	Rec. Human Cytochrome C
Form	Liquid
Concentration	1 mg/mL
Purification	PBS, pH 7.2-7.4
Storage buffer	no preservative
Contains	$4^{\circ} \mathrm{C}$
Storage conditions	AB_10598651
RRID	

Applications	Tested Dilution	Publications
Western Blot (WB)	Assay-Dependent	1 Publication
Immunocytochemistry (ICC/IF)	$1: 100$	-
Flow Cytometry (Flow)	Assay-Dependent	-
ELISA (ELISA)	Assay-Dependent	1 Publication
Immunoprecipitation (IP)	Assay-Dependent	-

Product Specific Information

Description: Cytochrome c was identified as a component required for the crucial steps in apoptosis, caspase-3 activation and DNA fragmentation. Cytochrome c was shown to redistribute from mitochondria to cytosol during apoptosis in intact cells.

Mitochrondrial cytochrome c is a water-soluble protein of 15 kDa with a net positive charge, residing loosely attached in the mitochrondrial intermembrane space. Cytochrome c functions in the respiratory chain by interaction with redox partners. The release of cytochrome c into the cytosol leads to an activation of an apoptotic program via activation of a caspase dependent pathway. Cytochrome c achieves this goal by interaction with other cytosolic factors forming a complex (apoptosome) composed of cytochrome c, Apaf-1, dATP and Apaf-3/caspase 9. Bcl-2 on the other hand was shown to be able to prevent apoptosis by blocking the release of cytochrome c from mitochondria.

Applications Tested: ELISA, Flow Cytometry, Western Blotting.

Product Images For Cytochrome C Monoclonal Antibody (2B5), eBioscience ${ }^{\text {TM }}$

Cytochrome C Antibody (BMS1037) in ICC/IF
Immunofluorescence analysis of Cytochrome C was performed using 70\%
 confluent log phase Hep G2 cells. The cells were fixed with 4\% paraformaldehyde for 10 minutes, permeabilized with 0.1% Triton $^{\mathrm{TM}} \mathrm{X}$-100 for 15 minutes, and blocked with 2% BSA for 45 minutes at room temperature. The cells were labeled with Cytochrome C Monoclonal Antibody (2B5), eBioscience ${ }^{\top M}$ (Product \# BMS1037) at 1:100 dilution in 0.1% BSA, incubated at 4 degree celsius overnight and then labeled with Goat anti-Mouse IgG (H+L) Highly CrossAdsorbed Secondary Antibody, Alexa Fluor Plus 488 (Product \# A32723), (1: 2000 dilution), for 45 minutes at room temperature (Panel a: Green). Nuclei (Panel b:Blue) were stained with ProLong ${ }^{\text {TM }}$ Diamond Antifade Mountant with DAPI (Product \# P36962). F-actin (Panel c: Red) was stained with Rhodamine Phalloidin (Product \# R415, 1:300 dilution). Panel d represents the merged image showing cytoplasmic (mitochondria-like) localization. Panel e represents control cells with no primary antibody to assess background. The images were captured at 60X magnification.

叩2 References

Western Blot (1)

Biomedicines	Year
miR-210 Regulates Apoptotic Cell Death during Cellular Hypoxia and	
Reoxygenation in a Diametrically Opposite Manner.	Species
"BMS1037 was used in Western Blot, ELISA to investigate the polarity of the miR-210-elicited cellular response, as miR-	
210 has been shown to exacerbate as well as attenuate hypoxia-driven apoptotic cell death."	
Authors: Marwarha G,Røsand $\varnothing, S c r i m g e o u r ~ N, S l a g s v o l d ~ K H, H ø y d a l ~ M A ~$	Dilution

ELISA (1)

Biomedicines	Year
miR-210 Regulates Apoptotic Cell Death during Cellular Hypoxia and	
Reoxygenation in a Diametrically Opposite Manner.	Species
"BMS1037 was used in Western Blot, ELISA to investigate the polarity of the miR-210-elicited cellular response, as miR-	Human
210 has been shown to exacerbate as well as attenuate hypoxia-driven apoptotic cell death."	Dilution
Authors: Marwarha G,Røsand $\varnothing, S c r i m g e o u r ~ N, S l a g s v o l d ~ K H, H ø y d a l ~ M A ~$	$1: 1000$

