Collagen II Monoclonal Antibody (2B1.5)

Catalog Number MA1-37493

Details

<table>
<thead>
<tr>
<th>Size</th>
<th>200 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host/Isotope</td>
<td>Mouse / IgG2a, kappa</td>
</tr>
<tr>
<td>Class</td>
<td>Monoclonal</td>
</tr>
<tr>
<td>Type</td>
<td>Antibody</td>
</tr>
<tr>
<td>Clone</td>
<td>2B1.5</td>
</tr>
<tr>
<td>Immunogen</td>
<td>A purified preparation of lathyritic type II collagen from embryonic chicken sternum</td>
</tr>
<tr>
<td>Conjugate</td>
<td>Unconjugated</td>
</tr>
<tr>
<td>Form</td>
<td>Liquid</td>
</tr>
<tr>
<td>Concentration</td>
<td>0.2 mg/mL</td>
</tr>
<tr>
<td>Purification</td>
<td>Protein A</td>
</tr>
<tr>
<td>Storage buffer</td>
<td>PBS, pH 7.4, with 0.2% BSA</td>
</tr>
<tr>
<td>Contains</td>
<td>0.09% sodium azide</td>
</tr>
<tr>
<td>Storage Conditions</td>
<td>4° C</td>
</tr>
</tbody>
</table>

Species Reactivity

- **Species reactivity**: Bovine, Chicken, Human, Mouse, Rat
- **Published species**: Rabbit, Rat, Pig, Bovine, Sheep, Human, Mouse, Goat, Not Applicable, Guinea pig

Tested Applications

- **Flow Cytometry (Flow)**: Assay-dependent
- **Immunohistochemistry (Paraffin) (IHC (P))**: 1-2 µg/mL
- **Western Blot (WB)**: 1-2 µg/mL

Published Applications

- **Immunocytochemistry (ICC/IF)**: See 8 publications below
- **Immunohistochemistry (IHC)**: See 47 publications below
- **Flow Cytometry (Flow)**: See 1 publications below
- **Immunohistochemistry (Frozen) (IHC (F))**: See 1 publications below
- **Western Blot (WB)**: See 5 publications below
- **Immunohistochemistry (Paraffin) (IHC (P))**: See 1 publications below

*Suggested working dilutions are given as a guide only. It is recommended that the user titrate the product for use in their own experiment using appropriate negative and positive controls.

Product specific information

Staining of formalin/paraffin tissues requires digestion of tissue sections with pepsin at 1mg/ml Tris-HCl, pH 2.0 for 15 min at RT or 10 min at 37C.

Background/Target Information

COL2A1 is the alpha-1 chain of type II collagen, a fibrillar collagen found in cartilage and the vitreous humor of the eye. Mutations in this gene are associated with achondrogenesis, chondrodysplasia, early onset familial osteoarthritis, SED congenita, Langer-Saldino achondrogenesis, Kniest dysplasia, Stickler syndrome type I, and spondyloepimetaphyseal dysplasia Strudwick type. In addition, defects in processing chondrocalcin, a calcium binding protein that is the C-propeptide of this collagen molecule, are also associated with chondrodysplasia.

Collagen II Antibody (MA1-37493) in IHC (P)

Formalin-fixed, paraffin-embedded human lung stained with Collagen II antibody using peroxidase-conjugate and AEC chromogen. Note staining of matrix in the bronchial cartilaginous plates.
PubMed References For Collagen II Monoclonal Antibody (2B1.5)

8 Immunocytochemistry References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| **Mouse / 1:100** | MA5-12789 was used in immunocytochemistry to study the cellular responses of the mouse palate to midpalatal suture expansion forces. | Orthodontics & craniofacial research (Aug 2012; 15: 148)
"The mouse palate and its cellular responses to midpalatal suture expansion forces."
Author(s):Katebi N,Kolpakova-Hart E,Lin CY,Olsen BR
PubMed Article URL:http://dx.doi.org/10.1111/j.1601-6343.2012.01547.x |
| **Rat / 1:100** | MA5-12789 was used in immunocytochemistry to study the fate of transplanted bone marrow-derived mesenchymal stem cells according to transplantation route in a rat model of spinal cord injury | Journal of Korean medical science (Jun 2012; 27: 586)
"Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes."
Author(s):Kang ES,Ha KY,Kim YH
PubMed Article URL:http://dx.doi.org/10.3346/jkms.2012.27.6.586 |
| **Rat / Not Cited** | MA5-12789 was used in immunocytochemistry to study collagenous matrix assembly in a rat chondrosarcoma cell line | Journal of biomedical materials research. Part A (Jul 2009; 90: 247)
"Characterization of collagenous matrix assembly in a chondrocyte model system."
PubMed Article URL:http://dx.doi.org/10.1002/jbm.a.32078 |
| **Human / Not Cited** | MA5-12789 was used in immunocytochemistry to study collagenous matrix assembly in a chondrosarcoma cell line | Histochromy and cell biology (Jul 2009; 133: 95)
"Isolation and in vitro characterisation of dental pulp stem cells from natal teeth."
Author(s):Karaoz E,Aksoy A,Doan BN,Mammadov D,Aksoy A,Gezen ZS,Yuricer S,Durukus G,Demircan PC,Sariboyaci AE
PubMed Article URL:http://dx.doi.org/10.1007/s00418-009-0646-5 |
| **Human / 1:200** | MA5-12789 was used in Immunocytochemistry-immunoflourescence to identify the therapeutic contribution of cell-printed constructs towards functional RC regeneration, demonstrating the translational potential of biomimetic gradient constructs for the clinical repair of multi-tissue interfaces. | Bioactive materials (Jan 2023; 19: 611)
"3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration."
Author(s):Chae S,Yong U,Park W,Choi YM,Jeon IH,Kang H,Jang J,Cho DW
PubMed Article URL:http://dx.doi.org/10.1016/j.bioactmat.2022.05.004 |
| **Rat / Not Cited** | MA5-12789 was used in immunocytochemistry to study the morphology and immunology of rat bone marrow-derived mesenchymal stem cells | Histochromy and cell biology (Nov 2009; 132: 533)
"Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunohistochemical markers."
Author(s):Karaoz E,Aksoy A,Ayhan S,Sariboyaci AE,Kaymaz F,Kasap M
PubMed Article URL:http://dx.doi.org/10.1007/s00418-009-0629-6 |
| **Human / Not Cited** | MA5-12789 was used in immunocytochemistry to study how paracrine and autocrine signals combine to promote full chondrogenic differentiation of a mesoblastic cell line | Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (Jan 2004; 19: 100)
"Paracrine and autocrine signals promoting full chondrogenic differentiation of a mesoblastic cell line."
Author(s):Locker M,Kellermann O,Bouclef M,Khun H,Huerre M,Poliard A
PubMed Article URL:http://dx.doi.org/10.1359/JBMR.0301206 |
<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human / 1:1</td>
<td>MA5-12789 was used in immunocytochemistry to study the molecular and ultrastructural properties of human bone marrow-derived mesenchymal stem cells</td>
</tr>
<tr>
<td>Bovine / 1:100</td>
<td>MA5-12789 was used in immunohistochemistry to evaluate a novel scaffolds for cartilage tissue engineering</td>
</tr>
<tr>
<td>Rat / 1:50</td>
<td>MA5-12789 was used in immunohistochemistry to study the differences in tendon-derived stem cells obtained from healthy tendons and those obtained from a rat model of tendinopathy</td>
</tr>
<tr>
<td>Rat / Not Cited</td>
<td>MA5-12789 was used in immunohistochemistry to study the role of smooth muscle cell transdifferentiation into chondrocytes in atherosclerotic calcification</td>
</tr>
<tr>
<td>Human / 1:100</td>
<td>MA5-12789 was used in immunohistochemistry to study the role of allogenic mesenchymal stem cell transplantation in improved healing of ischemic colon anastomosis</td>
</tr>
<tr>
<td>Bovine / Not Cited</td>
<td>MA5-12789 was used in immunohistochemistry to develop articular cartilage</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>MA5-12789 was used in immunohistochemistry to study the microanatomy of the lateral wall of the pituitary fossa</td>
</tr>
<tr>
<td>Rat / 1:100</td>
<td>MA5-12789 was used in immunohistochemistry to study chondrocyte phenotype and ectopic mineralization in collagenase-induced model of tendon injury</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>MA5-12789 was used in immunohistochemistry to investigate the effect of basic fibroblast growth factor on chondrogenesis</td>
</tr>
</tbody>
</table>

Products are warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, set forth in the Production documentation, specifications and/or accompanying package inserts (“Documentation”). No claim of suitability for use in applications regulated by FDA is made. The warranty, provided herein as a solus only when used by properly trained individual unless otherwise stated in the Documentation, runs for a period of one (1) year from the date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than the Buyer. Any model or sample furnished to Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.

Thermo Fisher Scientific
3747 N. Meridian Road
Rockford, IL 61015 USA
<table>
<thead>
<tr>
<th>Species</th>
<th>Cited/Not Cited</th>
<th>PubMed Article URL</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Not Cited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>1:100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinea pig</td>
<td>Not Cited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>1:500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>1:100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>1:100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovine</td>
<td>Not Cited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5-12789 was used in immunohistochemistry to study the expression of antigen presenting cell co-stimulatory molecules by pancreatic islet derived stem cells</td>
<td>Transplantation proceedings (Nov 2010; 42: 3663)</td>
<td>"Pancreatic islet derived stem cells can express co-stimulatory molecules of antigen-presenting cells." Author(s): Karaoz E, Okcu A, Saglam O, Genc ZS, Ayhan S, Kasap M PubMed Article URL: http://dx.doi.org/10.1016/j.transproceed.2010.07.093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5-12789 was used in immunohistochemistry to investigate the influence of fetal bovine serum on chondrogenesis in cultured cells</td>
<td>Journal of tissue engineering and regenerative medicine (Jun 2008; 1: 436)</td>
<td>"FBS suppresses TGF-beta1-induced chondrogenesis in synoviocyte pellet cultures while dexamethasone and dynamic stimuli are beneficial." Author(s): Bilgen B, Crisi S, Aaron RK, Cimbor DM PubMed Article URL: http://dx.doi.org/10.1002/jtbr.2712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5-12789 was used in immunohistochemistry to study the effect of chondrocyte cell seeding density in alginate beads on the expression of Sox9</td>
<td>Journal of biomedical materials research. Part A (Dec 2009; 91: 910)</td>
<td>"Sox9 expression of alginate-encapsulated chondrocytes is stimulated by low cell density." Author(s): Bernstein P, Dong M, Graupner S, Graupher S, Corbeil D, Gelinsky M, Günther KP, Fickert S PubMed Article URL: http://dx.doi.org/10.1002/jbm.a.32308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5-12789 was used in immunohistochemistry to research regulation of cartilage development and chondrocyte maturation by CCN1</td>
<td>Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (Mar 2016; 31: 549)</td>
<td>"CCN1 Regulates Chondrocyte Maturation and Cartilage Development." Author(s): Zhang Y, Sheu TJ, Hoak D, Shen J, Hilton MJ, Zuscik MJ, Jonason JH, O'Keefe RJ PubMed Article URL: http://dx.doi.org/10.1002/jbmr.2712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5-12789 was used in immunohistochemistry to study the effects of reduced heparan sulfate synthesis in human exostosis derived chondrocytes</td>
<td>BMC cell biology (Oct 2008; 9:)</td>
<td>"Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells." Author(s): Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y PubMed Article URL: http://dx.doi.org/10.1186/1471-2121-9-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5-12789 was used in immunohistochemistry to study how the differentiation potential of murine bone marrow-derived stem cells is affected by donor age and cell passage number</td>
<td>Stem cell research & therapy (Aug 2022; 13:)</td>
<td>"Modeling early changes associated with cartilage trauma using human-cell-laden hydrogel cartilage models." Author(s): He C, Clark KL, Tan J, Zhou H, Tuan RS, Lin H, Wu S, Alexander PG PubMed Article URL: http://dx.doi.org/10.1186/s13287-022-03022-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5-12789 was used in Immunohistochemistry to study how the differentiation potential of murine bone marrow-derived stem cells is affected by donor age and cell passage number</td>
<td>Stem cell research & therapy (Aug 2022; 13:)</td>
<td>"Modeling early changes associated with cartilage trauma using human-cell-laden hydrogel cartilage models." Author(s): He C, Clark KL, Tan J, Zhou H, Tuan RS, Lin H, Wu S, Alexander PG PubMed Article URL: http://dx.doi.org/10.1186/s13287-022-03022-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5-12789 was used in immunohistochemistry to study cartilage regeneration by culturing chondrocytes in scaffolds grafted with TATVHL peptide</td>
<td>Colloids and surfaces. B, Interfaces (May 2012; 93: 235)</td>
<td>"Cartilage regeneration by culturing chondrocytes in scaffolds grafted with TATVHL peptide." Author(s): Kuo YC, Wang CC PubMed Article URL: http://dx.doi.org/10.1016/j.colsurfb.2012.01.012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MA5-12789 was used in immunohistochemistry to test if mesenchymal stem cells derived from adipose tissue can alleviate azoosperma in rats

Not Applicable / Not Cited
BioMed research international (Nov 2013; 2013;)
"Recovery of fertility in azoosperma rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation."
PubMed Article URL:http://dx.doi.org/10.1155/2013/529589

MA5-12789 was used in immunohistochemistry to study whether a collagen hydrogel can induce the in vitro chondrogenic differentiation of mesenchymal stem cells

Rabbit / 1:500
Journal of biomedical materials research. Part A (Oct 2012; 100: 2717)
"An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells."
Author(s):Zhang L,Yuan T,Guo L,Zhang X
PubMed Article URL:http://dx.doi.org/10.1002/jbm.a.34194

MA5-12789 was used in immunohistochemistry to study the developmental potential of embryonic stem-cell-derived mesodermal progenitor cells

Mouse / Not Cited
Journal of cell science (May 2003; 116; 2015)
"Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells."
Author(s):Nakayama N,Duryea D,Manoukian R,Chow G,Han CY
PubMed Article URL:http://dx.doi.org/10.1242/jcs.00417

MA5-12789 was used in immunohistochemistry to evaluate the experimental methods for the handling of vitreous and retina

Rabbit / Not Cited
Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie (Feb 2009; 247; 193)
"Preservation of structure and immunoreactivity at the vitreoretinal interface of the rabbit eye."
Author(s):Pfeffer BA,Bernstein SA,Bartels SP
PubMed Article URL:http://dx.doi.org/10.1007/s00417-008-0991-4

MA5-12789 was used in immunohistochemistry to compare 3D co-culture constructs of primary equine mesenchymal stem cells and meniscus cells for their qualification to be applied for meniscus tissue engineering

Not Applicable / 1:400
Tissue engineering. Part A (May 2017; 23; 390)
"Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering."
Author(s):Kremer A,Ribitsch I,Reboredo J,Dürr J,Egerbacher M,Jenner F,Walles H
PubMed Article URL:http://dx.doi.org/10.1089/ten.TEA.2016.0317

MA5-12789 was used in immunohistochemistry to develop a system for cartilage regeneration in porous scaffolds using surface peptide modification to enhance chondrocyte adhesion

Bovine / Not Cited
Colloids and surfaces. B, Biointerfaces (May 2011; 84; 63)
"Surface modification with peptide for enhancing chondrocyte adhesion and cartilage regeneration in porous scaffolds."
Author(s):Kuo YC,Wang CC
PubMed Article URL:http://dx.doi.org/10.1016/j.colsurfb.2010.12.021

MA5-12789 was used in immunohistochemistry to study the use of albumin-grafted scaffolds to promote neocartilage formation

Pig / 1:200
Colloids and surfaces. B, Biointerfaces (Mar 2012; 91; 296)
"Application of albumin-grafted scaffolds to promote neocartilage formation."
Author(s):Lyu SR,Kuo YC,Lin MH,Hsieh WH,Chuang CW
PubMed Article URL:http://dx.doi.org/10.1016/j.colsurfb.2011.11.019

MA5-12789 was used in Immunohistochemistry to indicate that PDGF-BB participates in inhibiting the occurrence and development of IDD by inhibiting pyroptosis and regulating the MAPK signaling pathway

Mouse / Not Cited
Frontiers in pharmacology (Feb 2022; 12:)
"Platelet-Derived Growth Factor-BB Inhibits Intervertebral Disc Degeneration via Suppressing Pyroptosis and Activating the MAPK Signaling Pathway."
PubMed Article URL:http://dx.doi.org/10.3389/fphar.2021.799130

Products are warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Production documentation, specifications and/or accompanying package inserts (“Documentation”). Any claim of suitability for use in applications regulated by FDA is made. The warranty is limited to repair, replacement of or refund for the non-conforming Product(s) at Seller’s sole option. There is no obligation to repair, replace or refund for Products as the result of (I) accident, disaster or event of force majeure, (II) misuse, fault or negligence of or by Buyer, (III) use of the Products in a manner for which they were not designed, or (IV) improper...
MA1-37493 was used in immunohistochemistry to study the role of Notch signaling in murine articular cartilage and joint maintenance

"RB1-dependent Notch signaling is required for murine articular cartilage and joint maintenance."
PubMed Article URL:http://dx.doi.org/10.1002/art.38076

MA5-12789 was used in immunohistochemistry to study the formation of neoartilage by cultivating chondrocytes in elastin- and poly-L-lysine-modified scaffolds

Colloids and surfaces. B. Biointerfaces (May 2012; 93: 85)
"Chondrogenesis in scaffolds with surface modification of elastin and poly-L-lysine."
Author(s): Kuo YC, Chung CY

MA5-12789 was used in immunohistochemistry to investigate the changes of cartilage and bone development in Fgfr2 specific mutation mice

"Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse."
PubMed Article URL:http://dx.doi.org/10.1242/dev.01914

MA1-37493 was used in Immunohistochemistry to analyse the effect of rat bone marrow-mesenchymal stem cells delivery on lesion site after spinal cord injury, and to observe the functional recovery following transplantation.

Journal of Neuroscience (Mar 2012; 22: 207)
"Reduction of lesion in injured rat spinal cord and partial functional recovery of motility after bone marrow derived mesenchymal stem cell transplantation."
Author(s): Kaya O, Kaba S, Duruksu G, Okcu A, Subasi C, Ay B, Musluman M, Civelek E
PubMed Article URL:http://dx.doi.org/10.1537/1019-5149.JTN.5412-11.1

MA5-12789 was used in immunohistochemistry to study the role of Hsp47 in cartilage formation and endochondral ossification using conditional Hsp47 knockout mice

Journal of cell science (Mar 2012; 125: 1118)
"The molecular chaperone Hsp47 is essential for cartilage and endochondral bone formation."
PubMed Article URL:http://dx.doi.org/10.1242/jcs.089748

MA5-12789 was used in immunohistochemistry to study the role of msx1 in the dedifferentiation of mammalian myotubes

Cell (Dec 2000; 103: 1099)
"Dedifferentiation of mammalian myotubes induced by msx1."
Author(s): Odelberg SJ, Kollhoff A, Keating MT
PubMed Article URL:http://dx.doi.org/10.1016/s0092-8674(00)00212-9

MA5-12789 was used in immunohistochemistry to evaluate an engineered biohybrid cartilage

Annals of biomedical engineering (May 2006; 34: 737)
"Mechanical interlocking of engineered cartilage to an underlying polymeric substrate: towards a biohybrid tissue equivalent."
Author(s): Romito L, Ameer GA
PubMed Article URL:http://dx.doi.org/10.1007/s10439-006-9089-5

MA5-12789 was used in immunohistochemistry to study the molecular mechanism of Ltbp-3-mediated regulation of chondrocyte differentiation

The Journal of endocrinology (Oct 2002; 175: 129)
"Bone defects in latent TGF-beta binding protein (Ltbp)-3 null mice; a role for Ltbp in TGF-beta presentation."
Author(s): Dabovic B, Chen Y, Colarossi C, Zambuto L, Obata H, Rifkin DB
PubMed Article URL:http://dx.doi.org/10.1677/joe.0.1750129
<table>
<thead>
<tr>
<th>Species</th>
<th>Cited Status</th>
<th>Publication Details</th>
</tr>
</thead>
</table>
| Human / Not Cited | MA5-12789 was used in Immunohistochemistry to study cartilage regeneration using heparin-conjugated scaffolds with inverted colloidal crystal pores | Biochimica et biophysica acta. General subjects (Aug 2020; 1864:)

"Marrow vesicle biomimetics harboring Annexin A5 and alkaline phosphatase bind to the native collagen matrix produced by mineralizing vascular smooth muscle cells."

Author(s):Bolean M, Iztzi B, van Kerckhoven S, Bottini M, Ramos AP, Millán JL, Hoylaerts MF, Ciancaglini P

PubMed Article URL:http://dx.doi.org/10.1016/j.bbagen.2020.129629 |
| Bovine / 1:100 | MA5-12789 was used in Immunohistochemistry to study cartilage regeneration using heparin-conjugated scaffolds with inverted colloidal crystal pores | Colloids and surfaces. B. Biointerfaces (Feb 2011; 82: 616)

"Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration."

Author(s):Kuo YC, Tsai YT

PubMed Article URL:http://dx.doi.org/10.1016/j.colsurfb.2010.10.031 |
| Mouse / Not Cited | MA5-12789 was used in Immunohistochemistry to study the chondrogenic differentiation of human mesenchymal stem cells encapsulated in injectable collagen microspheres | The Journal of biological chemistry (May 2012; 287: 15760)

"Vinculin functions as regulator of chondrogenesis."

Author(s):Koshimizu T, Kawai M, Kondou H, Tachikawa K, Sakai N, Ozono K, Michigami T

PubMed Article URL:http://dx.doi.org/10.1074/jbc.M111.308072 |
| Human / Not Cited | MA5-12789 was used in Immunohistochemistry to study the chondrogenic differentiation of human mesenchymal stem cells encapsulated in injectable collagen microspheres | Materials (Aug 2008; 9: 3201)

"In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration."

Author(s):Hui TY, Cheung KM, Cheung WL, Chan D, Chan BP

PubMed Article URL:http://dx.doi.org/10.1016/j.biomaterials.2008.04.001 |
| Rabbit / Not Cited | MA1-37493 was used in Immunohistochemistry to compare CA4+ CECT for cartilage quantification of unfixed and neutral buffered formalin (NBF)-fixed rabbit distal femur cartilage after 8-, 24- and 30-hour contrast agent diffusion. | American journal of translational research (Oct 2021; 13: 8921)

"Influence of fixation on CA4+ contrast enhanced microCT of articular cartilage and subsequent feasibility for histological evaluation."

Author(s):Gao X, Patwa AN, Deng Z, Utsunomiya H, Grinstaff MW, Ruzbarsky JD, Snyder BD, Ravuri S, Philippin MJ, Huard J

| Mouse / Not Cited | MA5-12789 was used in Immunohistochemistry to study the distribution of different collagen types in the human tympanic membrane | Developmental dynamics: an official publication of the American Association of Anatomists (May 2002; 224: 79)

"Growth defect in Grg5 null mice is associated with reduced Ihh signaling in growth plates."

Author(s):Wang WF, Wang YG, Regnato AM, Plotkina S, Gridley T, Olsen BR

PubMed Article URL:http://dx.doi.org/10.1002/dvdy.10089 |
| Human / Not Cited | MA5-12789 was used in Immunohistochemistry to study the distribution of different collagen types in the human tympanic membrane | Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology (Dec 2009; 30: 1225)

"Collagen type distribution in the healthy human tympanic membrane."

Author(s):Knutsson J, Bagger-Sjöbäck D von Unge M

PubMed Article URL:http://dx.doi.org/10.1097/MAO.0b013e3181e621 |
| Rat / 1:20 | MA5-12789 was used in Immunohistochemistry to analyze growth plate chondrocytes in growth-retarded young rats with CKD induced by adenine intake (AD), control rats fed ad libitum (C) or pair-fed with the AD group (PF), and CKD rats treated with growth hormone (ADGH). | International journal of molecular sciences (Jun 2020; 21:)

PubMed Article URL:http://dx.doi.org/10.3390/ijms21124519
MA5-12789 was used in immunohistochemistry to study the effects of treatment with autologous marrow aspirate and hyaluronic acid on articular cartilage regeneration

Sheep / Not Cited

Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association (Dec 2009; 25: 1391)

"Articular cartilage regeneration with autologous marrow aspirate and hyaluronic Acid: an experimental study in a goat model."

PubMed Article URL:http://dx.doi.org/10.1097/JAR.0b013e3181b9e48c

MA5-12789 was used in immunohistochemistry to examine the effect of mechanical stress on skeletal remodeling

Mouse / 1:100

Journal of biomedical optics (Feb 2013; 18:)

"Quantitative polarized light microscopy of unstained mammalian cochlear sections."

Author(s): Kawami NM, Ong CA, Lysaght AC, Haward SJ, McKinley GH, Stankovic KM

PubMed Article URL:http://dx.doi.org/10.1117/1.JBO.18.2.026021

MA5-12789 was used in immunohistochemistry to study unstained sections of the murine cochlear using quantitative polarized light microscopy

Mouse / Not Cited

Bone (Jun 2007; 40: 1483)

"Mechanical force-induced midpalatal suture remodeling in mice."

Author(s): Hou B, Fukai N, Oisen BR

PubMed Article URL:http://dx.doi.org/10.1016/j.bone.2007.01.019

MA5-12789 was used in immunohistochemistry to study suppression of chondrocyte proliferation by FGF23 in the presence of alpha-Klotho and the significance for X-linked hypophosphatemic rickets growth retardation

Mouse / Not Cited

The Journal of biological chemistry (Jan 2013; 288: 2414)

"FGF23 suppresses chondrocyte proliferation in the presence of soluble -Klotho both in vitro and in vivo."

Author(s): Kawai M, Kinoshita S, Kimoto A, Hasegawa Y, Miyagawa K, Yamazaki M, Ohata Y, Ozono K, Michigami T

PubMed Article URL:http://dx.doi.org/10.1074/jbc.M112.410043

MA5-12789 was used in immunohistochemistry to study the ability of articular cartilage grafts to increase transition zone regeneration during healing of the bone-tendon junction

Goat / 1:200

Clinical orthopaedics and related research (Apr 2009; 467: 1092)

"Articular cartilage increases transition zone regeneration in bone-tendon junction healing."

Author(s): Wong MW, Qin L, Loe KM, Leung KS

PubMed Article URL:http://dx.doi.org/10.1099/s11999-008-0606-8

MA5-12789 was used in immunohistochemistry to develop a novel decalcification method that maintains mRNA integrity and aids gene expression analysis of mineralized tissues

Mouse / 1:1000

PloS one (Sep 2013; 8:)

"Maintaining mRNA Integrity during decalcification of mineralized tissues."

Author(s): Belluccio D, Rowley L, Little CB, Bateman JF

PubMed Article URL:http://dx.doi.org/10.1371/journal.pone.0058154

MA5-12789 was used in immunohistochemistry to study the osteochondral healing potential of hyaluronic acid plus diacerein

Rabbit / 1:100

"Combined effect of subchondral drilling and hyaluronic acid with/without diacerein in full-thickness articular cartilage lesion in rabbits."

Author(s): Suwannaloet W, Laupattarakasem W, Sukon P, Ong-Chai S, Laupattarakasem P

PubMed Article URL:http://dx.doi.org/10.1100/2012/310745

1 Flow Cytometry References

Species / Dilution Summary

MA5-12789 was used in Flow cytometry/Cell sorting to show that Tarm1 expression is elevated in the joints of rheumatoid arthritis mouse models, and the development of collagen-induced arthritis (CIA) is suppressed in Tarm1−/− mice.

Mouse / Not Cited

Nature communications (Jan 2021; 12:)

"TARM1 contributes to development of arthritis by activating dendritic cells through recognition of collagen."

Author(s): Yabe R, Chung SH, Murayama MA, Kubo S, Shimizu K, Akahori Y, Maruhashi T, Seno A, Kaifu T, Sajo S, Ikawarda Y

PubMed Article URL:http://dx.doi.org/10.1038/s41467-020-20307-9

1 Immunohistochemistry (Frozen) References

Species / Dilution Summary

MA5-12789 was used in immunohistochemistry to study the effects of treatment with autologous marrow aspirate and hyaluronic acid on articular cartilage regeneration
MA5-12789 was used in Immunohistochemistry (Frozen) to conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.

Mouse / 1:100

Development (Cambridge, England) (Jul 2020; 147:1)

"The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology."

Author(s): Shpargel KB, Mangini CL, Xie G, Ge K, Magnuson T

PubMed Article URL: http://dx.doi.org/10.1242/dev.187997

5 Western Blot References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse / Not Cited</td>
<td>MA5-12789 was used in western blot to study the role of galectin-3 in regulating MMP-9 function during endochondral bone formation</td>
</tr>
<tr>
<td></td>
<td>"Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation."</td>
</tr>
<tr>
<td></td>
<td>Author(s): Ortega N, Behonick DJ, Colnot C, Cooper DN, Werb Z</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1091/mbc.e04-12-1119</td>
</tr>
<tr>
<td>Human / 1:5000</td>
<td>MA5-12789 was used in Western Blot to indicate that GASS participated in the development of OA by regulating the biological behavior of chondrocytes via the miR34a/Bcl2 axis.</td>
</tr>
<tr>
<td></td>
<td>Molecular biology of the cell (Jun 2005; 16: 3028)</td>
</tr>
<tr>
<td></td>
<td>"Silencing of longchain noncoding RNA GASS in osteoarthritic chondrocytes is mediated by targeting the miR34a/Bcl2 axis."</td>
</tr>
<tr>
<td></td>
<td>Author(s): Ji Q, Qiao X, Liu Y, Wang D, Yan J</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.3892/mmr.2019.10900</td>
</tr>
<tr>
<td>Rat / 2 µg/mL</td>
<td>MA5-12789 was used in western blot to investigate the protein profiles in adult rat bone</td>
</tr>
<tr>
<td></td>
<td>Journal of cellular biochemistry (May 2007; 101:466)</td>
</tr>
<tr>
<td></td>
<td>"A proteomic analysis of adult rat bone reveals the presence of cartilage/chondrocyte markers."</td>
</tr>
<tr>
<td></td>
<td>Author(s): Schreweis MA, Butler JP, Kulkarni NH, Knierman MD, Higgs RE, Halladay DL, Onyia JE, Hale JE</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1002/jcb.21196</td>
</tr>
<tr>
<td>Rabbit / Not Cited</td>
<td>MA5-12789 was used in western blot to study the use of collagen-calcium phosphate and PHBV matrices for tissue engineering of cartilage</td>
</tr>
<tr>
<td></td>
<td>Biomaterials (Sep 2005; 26:5187)</td>
</tr>
<tr>
<td></td>
<td>"Tissue engineered cartilage on collagen and PHBV matrices."</td>
</tr>
<tr>
<td></td>
<td>Author(s): Köse GT, Korkusuz F, Ozkul A, Soysal Y, Ozdemir T, Yildiz C, Hasirci V</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1016/j.biomaterials.2005.01.037</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>MA5-12789 was used in western blot to study the molecular and cellular characteristics of processed lipoaspirate cells during chondrogenic differentiation in vitro and cartilage formation in vivo</td>
</tr>
<tr>
<td></td>
<td>Journal of cellular and molecular medicine (Mar 2006; 9:929)</td>
</tr>
<tr>
<td></td>
<td>"Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo."</td>
</tr>
</tbody>
</table>

1 Immunohistochemistry (Paraffin) References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit / Not Cited</td>
<td>MA137493 was used in immunohistochemistry - paraffin section to generate biomaterial scaffolds that induce hyaline cartilage regeneration of rabbit knees</td>
</tr>
<tr>
<td></td>
<td>Iranian journal of medical sciences (Nov 2016; 41:507)</td>
</tr>
<tr>
<td></td>
<td>"Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits."</td>
</tr>
<tr>
<td></td>
<td>Author(s): Bahmanpour S, Ghasemi M, Sadeghi-Naini M, Kashani IR</td>
</tr>
</tbody>
</table>