Hepatitis C Virus Core Antigen Monoclonal Antibody (C7-50)

Catalog Number MA1-080

Details

Size	100 µg
Host/Isotope	Mouse / IgG1
Class	Monoclonal
Type	Antibody
Clone	C7-50
Immunogen	Purified HCV core-GST fusion protein (genotype 1b).
Conjugate	Unconjugated
Form	Liquid
Concentration	1 mg/mL
Purification	Protein A
Contains	0.05% sodium azide
Storage Conditions	-20° C, Avoid Freeze/Thaw Cycles

Species Reactivity

<table>
<thead>
<tr>
<th>Species</th>
<th>Reactivity</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td>Virus</td>
<td></td>
</tr>
</tbody>
</table>

Tested Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA (ELISA)</td>
<td>Assay-dependent</td>
</tr>
<tr>
<td>Flow Cytometry (Flow)</td>
<td>1/100</td>
</tr>
<tr>
<td>Immunoprecipitation (IP)</td>
<td>Assay-dependent</td>
</tr>
<tr>
<td>Western Blot (WB)</td>
<td>1 µg/mL</td>
</tr>
<tr>
<td>Immunocytochemistry (ICC/IF)</td>
<td>Assay-dependent</td>
</tr>
</tbody>
</table>

Published Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Blot (WB)</td>
<td>See 43 publications below</td>
</tr>
<tr>
<td>Immunocytochemistry (ICC/IF)</td>
<td>See 55 publications below</td>
</tr>
<tr>
<td>Immunoprecipitation (IP)</td>
<td>See 1 publications below</td>
</tr>
<tr>
<td>Flow Cytometry (Flow)</td>
<td>See 4 publications below</td>
</tr>
<tr>
<td>Miscellaneous PubMed (Misc)</td>
<td>See 2 publications below</td>
</tr>
<tr>
<td>ELISA (ELISA)</td>
<td>See 2 publications below</td>
</tr>
<tr>
<td>Immunohistochemistry (IHC)</td>
<td>See 3 publications below</td>
</tr>
</tbody>
</table>

* Suggested working dilutions are given as a guide only. It is recommended that the user titrate the product for use in their own experiment using appropriate negative and positive controls.

Product specific information

MA1-080 detects hepatitis C virus (HCV) core protein from transfected human and primate cell lines. MA1-080 has been successfully used in Western blot, immunoprecipitation, immunofluorescence and ELISA procedures. By Western blot, this antibody detects a single ~21 kDa protein representing HCV core protein in various transfected cell lines. Immunofluorescence staining of HCV core protein in transfected chimp hepatocytes yields a staining pattern consistent with cytoplasmic and vesicular staining. The MA1-080 immunogen is purified HCV core-GST fusion protein (genotype 1b). This antibody recognizes an epitope between amino acid residues 21-40 of HCV core protein. This sequence is conserved among different HCV strains.

Background/Target Information

HCV is a positive, single-stranded RNA virus in the Flaviviridae family. The genome is approximately 10,000 nucleotides and encodes a single polyprotein of about 3,000 amino acids. The polyprotein is processed by host cell and viral proteases into three major structural proteins and several non-structural protein necessary for viral replication. Several different genotypes of HCV with slightly different genomic sequences have since been identified that correlate with differences in response to treatment with interferon alpha.

PubMed References For Hepatitis C Virus Core Antigen Monoclonal Antibody (C7-50)

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus / 1:2000</td>
<td>MA1-080 was used in western blot to study HCV assembly using genotype 1a H77S</td>
</tr>
<tr>
<td>Virus / Not Cited</td>
<td>MA1-080 was used in western blot to investigate the effect of RNase L on Hepatitis C viral RNA cleavage</td>
</tr>
<tr>
<td>Virus / Not Cited</td>
<td>MA1-080 was used in Western Blotting to uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer.</td>
</tr>
<tr>
<td>Virus / Not Cited</td>
<td>MA1080 was used in western blot to determine the effect of the hepatitis C viral load on host DNA damage</td>
</tr>
<tr>
<td>Virus / Not Cited</td>
<td>MA1-080 was used in western blot to study the mechanisms underlying cell-cell contact-mediated HCV transfer and infection</td>
</tr>
<tr>
<td>Virus / 1 μg/mL</td>
<td>Journal of virology (Aug 2013; 87: 8545) "Cell-cell contact-mediated hepatitis C virus (HCV) transfer, productive infection, and replication and their requirement for HCV receptors." Author(s): Liu Z, He JJ. PubMed Article URL: http://dx.doi.org/10.1128/JVI.01062-13</td>
</tr>
<tr>
<td>Virus / Not Cited</td>
<td>MA1-080 was used in western blot to study HCV assembly using genotype 1a H77S</td>
</tr>
<tr>
<td>Virus / Not Cited</td>
<td>MA1-080 was used in western blot to determine the effect of the hepatitis C viral load on host DNA damage</td>
</tr>
<tr>
<td>Virus / Not Cited</td>
<td>MA1-080 was used in Western Blotting to describe the first rationally designed viroinhibinor with a comprehensive structure-activity relationship (SAR).</td>
</tr>
</tbody>
</table>

Products are warranted to operate and perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Product documentation, specifications and/or accompanying package inserts (“Documentation”). No claim of suitability for use in any application regulated by FDA is made. The warranty period shall be limited to one year from date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than the Buyer. Any model or sample furnished to Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.

Virus / Not Cited

MA1-080 was used in western blot to study the regulation of HCV replication by let-7b

"Let-7b is a novel regulator of hepatitis C virus replication."
Author(s):Cheng JC,Yeh YJ,Tseng CP,Hau SD,Chang YL,Sakamoto N,Huang HD
PubMed Article URL:http://dx.doi.org/10.1007/s00018-012-0940-6

Virus / Not Cited

MA1-080 was used in western blot to identify the hepatoprotective component in silymarin

Proceedings of the National Academy of Sciences of the United States of America (Mar 2010; 107: 5995)
"Identification of hepatoprotective flavonolignans from silymarin."
PubMed Article URL:http://dx.doi.org/10.1073/pnas.0914009107

Virus / Not Cited

MA1-080 was used in western blot to investigate the mechanism for phosphatidylinositol 3-kinase- and ERK-mediated regulation of hepatitis C virus RNA replication.

The Journal of biological chemistry (Apr 2007; 282: 11836)
"p21-activated kinase 1 is activated through the mammalian target of rapamycin/p70 S6 kinase pathway and regulates the replication of hepatitis C virus in human hepatoma cells."
Author(s):Ishida H,Li K,Yi M,Lemon SM
PubMed Article URL:http://dx.doi.org/10.1074/jbc.M610106200

Virus / Not Cited

MA1-080 was used in western blot to study the role of p53 function in the mechanism by which overexpression of protein phosphatase-2A promotes hepatocellular carcinogenesis

Carcinogenesis (Jan 2014; 35: 114)
"Protein phosphatase 2A promotes hepatocellular carcinogenesis in the diethylnitrosamine mouse model through inhibition of p53."
Author(s):Duong FH,Dill MT,Matter MS,Makowska Z,Calabrese D,Diethe S,Ketterer T,Terracciano L,Heim MH
PubMed Article URL:http://dx.doi.org/10.1093/carcin/bgt258

Virus / 1 µg/mL

MA1-080 was used in western blot to produce non-replicative, yet infectious, HCV virions

Journal of virology (Sep 2004; 78: 9257)
"Unique features of hepatitis C virus capsid formation revealed by de novo cell-free assembly."
Author(s):Klein KC,Polyak SJ,Lingappa JR
PubMed Article URL:http://dx.doi.org/10.1128/JVI.78.17.9257-9269.2004

Virus / Not Cited

MA1-080 was used in western blot to study basic residues in the HCV core that are essential both for NS5A complex formation and viral infectivity

Journal of virology (Apr 2011; 54: 612)
"HIV infection increases HCV-induced hepatocyte apoptosis."
PubMed Article URL:http://dx.doi.org/10.1101/j.jhep.2010.07.042

Virus / Not Cited

MA1-080 was used in western blot to study basic residues in the HCV core that are essential both for NS5A complex formation and viral infectivity

PloS one (Jan 2015; 9:)
"HCV core residues critical for infectivity are also involved in core-NS5A complex formation."
Author(s):Gawlik K,Baugh J,Chatterji J,Lim PJ,Bobartd MD,Galley PA
PubMed Article URL:http://dx.doi.org/10.1371/journal.ppat.1008866

Virus / Not Cited

MA1-080 was used in western blot to study the ability of measles viruses expressing HCV capsid and envelope proteins to elicit an HCV neutralizing immune response

Journal of virology (Nov 2012; 86: 11558)
"Broadly neutralizing immune responses against hepatitis C virus induced by vectored measles viruses and a recombinant envelope protein booster."
PubMed Article URL:http://dx.doi.org/10.1128/JVI.01776-12
MA1-080 was used in Western Blotting to study the mechanism of miRNA in IFN mediated host response.

Virus / Not Cited

The Journal of biological chemistry (Apr 2018; 293: 5975)

"Interferon down-regulation of miR-1225-3p as an antiviral mechanism through modulating Grb2-associated binding protein 3 expression."

Author(s): Cheng M, Niu Y, Fan J, Chi X, Liu X, Yang W

PubMed Article URL: http://dx.doi.org/10.1074/jbc.RA117.000738

MA1-080 was used in western blot to study the ability of aptamers against HCV NS5B RNA helicase to inhibit viral replication

Virus / Not Cited

Journal of virology (Jun 2013; 87: 7066)

"Inhibition of hepatitis C virus (HCV) replication by specific RNA aptamers against HCV NS5B RNA replicase."

PubMed Article URL: http://dx.doi.org/10.1128/JVI.00405-13

MA1-080 was used in Western Blotting to suggest a mechanism by which the viruses adapt to attenuate cellular antiviral activity and to establish persistent infection.

Virus / Not Cited

FEBS letters (May 2012; 586: 1272)

"Modulation of the type I interferon pathways by culture-adaptive hepatitis C virus core mutants."

Author(s): Kang JI, Kwon YC, Ahn BY

PubMed Article URL: http://dx.doi.org/10.1016/j.febslet.2012.03.062

MA1-080 was used in western blot to study the mechanism by which hepatitis C virus NS2 protein contributes to virus particle assembly

Virus / Not Cited

Journal of virology (Sep 2009; 83: 8379)

"Hepatitis C virus NS2 protein contributes to virus particle assembly via opposing epistatic interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes."

Author(s): Phan T, Beran RK, Peters C, Lorenz IC, Linderbach BD

PubMed Article URL: http://dx.doi.org/10.1128/JVI.00891-09

MA1-080 was used in western blot to identify the specific Toll-like receptor agonists and RNA viruses that can induce the expression of NKG2DLs on mDCs

Virus / Not Cited

International immunology (Oct 2007; 19: 1145)

"Induction of NKG2D ligands on human dendritic cells by TLR ligand stimulation and RNA virus infection."

Author(s): Ebihara T, Masuda H, Akazawa T, Shingai M, Kikuta H, Ariga T, Matsumoto M, Seya T

PubMed Article URL: http://dx.doi.org/10.1010/j.intimm/dxm073

MA1-080 was used in western blot to study the release of hepatitis C virus controlled by alpha-taxilin

Virus / Not Cited

The Biochemical journal (Jan 2016; 473: 145)

"Characterization of -taxilin as a novel factor controlling the release of hepatitis C virus."

PubMed Article URL: http://dx.doi.org/10.1042/BJ20150717

MA1-080 was used in western blot to study the inhibitory effect of IL28B on hepatitis C virus replication and its mechanism

Virus / Not Cited

"IL28B inhibits hepatitis C virus replication through the JAK-STAT pathway."

Author(s): Zhang L, Jilg N, Shao RX, Lin W, Fusco DN, Zhao H, Goto K, Peng LF, Chen WC, Chung RT

PubMed Article URL: http://dx.doi.org/10.1016/j.jhep.2010.11.019

MA1-080 was used in Western Blotting to suggest a mechanism by which the viruses adapt to attenuate cellular antiviral activity and to establish persistent infection.

Virus / Not Cited

Journal of virology (Jun 2014; 88: 5956)

"Hepatitis C virus NS5A hijacks ARFGAP1 to maintain a phosphatidylinositol 4-phosphate-enriched microenvironment."

Author(s): Li H, Yang X, Yang G, Hong Z, Zhou L, Yin P, Xiao Y, Chen L, Chung RT, Zhang L

PubMed Article URL: http://dx.doi.org/10.1128/JVI.03738-13

MA1-080 was used in western blot to investigate the influence of iron on hepatitis C virus replication

Virus / Not Cited

Journal of virology (Dec 2010; 53: 995)

"Iron inhibits replication of infectious hepatitis C virus in permissive Huh7.5.1 cells."

Author(s): Fillebeen C, Pantopoulos K

PubMed Article URL: http://dx.doi.org/10.1016/j.jhep.2010.04.044

Products are warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Production documentation, specifications and/or accompanying package inserts (“Documentation”). No claim of suitability for use in applications regulated by FDA is made. The warranty provided herein is valid only when used by properly trained individuals. Unless otherwise stated in the Documentation, the warranty is limited to one year from date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than the Buyer. Any model or sample furnished to the Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.

No other warranties, either express or implied, are granted including without limitation, implied warranties of merchantability, fitness for any particular purpose, or non infringement. Buyers exclusive remedy for non-conforming products during the warranty period is limited to repair, replacement or refund for the non-conforming product, at Seller’s sole option. There is no obligation to repair, replace or refund for products as the result of an accident, damage or event of force majeure, misuse, fault or negligence of or by Buyer. Use of the products in a manner for which they were not designed, or in improper storage and handling of the products, unless otherwise expressly stated on the product or in the documentation accompanying the product, the Product is intended for research only and as such to be used for any purpose, including without limitation, unauthorized commercial uses, in vitro diagnostic uses, as one or in vivo therapeutic uses, or any type of consumption by or application to human or animals.
MA1-080 was used in western blot to study the role of hepatitis C virus core protein in the changes of mitochondrial function.

Journal of viral hepatitis (Nov 2010; 17: 784)
"Role of Hepatitis C Virus Core Protein in Viral-induced Mitochondrial Dysfunction."
Author(s): Wang T, Campbell RV, Yi MK, Lemon SM, Weinman SA
PubMed Article URL: http://dx.doi.org/10.1111/j.1365-2893.2009.01238.x

World journal of hepatology (Feb 2021; 13: 187)
"Adult human liver slice cultures: Modelling of liver fibrosis and evaluation of new anti-fibrotic drugs."
PubMed Article URL: http://dx.doi.org/10.4254/wjh.v13.i2.187

MA1-080 was used in Western Blot to investigate human liver fibrogenesis and anti-fibrotic therapies, through evaluating the three dimensional ex vivo liver slice model.

Cells (Apr 2020; 9:)
"Targeting Autophagy Augments BBR-Mediated Cell Death in Human Hepatoma Cells Harboring Hepatitis C Virus RNA."
Author(s): Tai CJ, Jassey A, Liu CH, Tai C J, Richardson CD, Wong SH, Lin LT
PubMed Article URL: http://dx.doi.org/10.3390/cells9040908

MA1-080 was used in western blot to show that berberine treatment induced a biphasic cell death irrespective of the presence of HCV subgenomic replicon RNA.

Gastroenterology (Jun 2010; 138: 2509)
"Hepatitis C virus regulates transforming growth factor beta1 production through the generation of reactive oxygen species in a nuclear factor kappaB-dependent manner."
Author(s): Lin W, Tsai WL, Shao RX, Wu G, Peng LF, Barlow LL, Chung WJ, Zhang L, Zhao H, Jang JY, Chung RT
PubMed Article URL: http://dx.doi.org/10.1053/j.gastro.2010.03.008

MA1-080 was used in western blot to investigate the mechanism for the regulatory effect of hepatitis C virus on and transforming growth factor beta 1 in hepatic fibrosis.

PloS one (Jan 2016; 9:)
"Visualization and analysis of hepatitis C virus structural proteins at lipid droplets by super-resolution microscopy."
Author(s): Eggert D, Rösch K, Reimer R, Herker E
PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0102511

MA1-080 was used in western blot to use super-resolution microscopy to visualize and analyze hepatitis C virus structural proteins at lipid droplets.

Biochemical and biophysical research communications (Aug 2011; 412: 92)
"Alterations in microRNA expression profile in HCV-infected hepatoma cells: involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway."
Author(s): Tahira H, Tatsutomi T, Hosui A, Nakai T, Kodama T, Shimizu S, Hikita H, Hiramatsu N, Kanto T, Hayashi N, Takehara T
PubMed Article URL: http://dx.doi.org/10.1016/j.bbrc.2011.07.049

MA1-080 was used in western blot to investigate microRNAs affected by HCV infection in HuH7 cells.

Hepatology (Baltimore, Md.) (Nov 2011; 54: 1570)
"Vitamin D: an innate antiviral agent suppressing hepatitis C virus in human hepatocytes."
PubMed Article URL: http://dx.doi.org/10.1002/hep.24575

MA1-080 was used in western blot to investigate the effectiveness of vitamin D for HCV treatment.

Biochemical and biophysical research communications (Feb 2011; 85: 1193)
"The acidic domain of hepatitis C virus NS4A contributes to RNA replication and virus particle assembly."
Author(s): Phan T, Kohlway A, Dimberu P, Pyle AM, Lindenbach BD
PubMed Article URL: http://dx.doi.org/10.1128/JVI.01889-10
MA1-080 was used in western blot to investigate the effect of suppressor of cytokine signaling 3 SOCS3 on hepatitis C virus replication and its mechanism.

Journal of virology (Jun 2010; 84: 6060)
"Suppressor of cytokine signaling 3 suppresses hepatitis C virus replication in an mTOR-dependent manner."
Author(s):Shao RX,Zhang L,Peng LF,Sun E,Chung WJ,Jang JY,Tsai WL,Hypolite G,Chung RT
PubMed Article URL:http://dx.doi.org/10.1128/JVI.02484-09

MA1-080 was used in western blot to study the role of protein kinase D in HCV secretion via its effects on ceramide transfer protein and oxysterol binding protein.

Virus: 1:2500
The Journal of biological chemistry (Apr 2011; 286: 11265)
"Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein."
Author(s):Amako Y,Syed GH,Siddiqi A
PubMed Article URL:http://dx.doi.org/10.1074/jbc.M110.182097

MA1-080 was used in western blot to identify host genes involved in producing the antiviral effect of interferon-alpha.

Virus: Not Cited
Journal of hepatology (Feb 2012; 56: 326)
“A functional genomic screen reveals novel host genes that mediate interferon-alpha’s effects against hepatitis C virus.”
PubMed Article URL:http://dx.doi.org/10.1016/j.jhep.2011.07.026

MA1-080 was used in Western Blotting to determine the role of microRNA-122 in hepatocyte intrinsic innate immunity.

Virus: Not Cited
eLife (Feb 2019; 8:)
"MicroRNA122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway."
Author(s):Xu H,Xu SJ,Xie SJ,Zhang Y,Yang JH,Zhang WQ,Zheng MN,Zhou H,Qu LH
PubMed Article URL:http://dx.doi.org/10.7554/eLife.41159

MA1-080 was used in Western Blotting to elucidate the mechanisms of Simeprevir treatment of Hepatitis C virus failure due to NS3-Q80K.

Virus: Not Cited
Antimicrobial agents and chemotherapy (Jul 2018; 62:)
"Unexpected Replication Boost by Simeprevir for Simeprevir-Resistant Variants in Genotype 1a Hepatitis C Virus."
PubMed Article URL:http://dx.doi.org/10.1128/AAC.009502

MA1-080 was used in western blot to develop a cell-based FRET assay for high-throughput anti-HCV compound screening.

Virus: Not Cited
Antimicrobial agents and chemotherapy (Oct 2009; 53: 4311)
"Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening."
Author(s):Yi X,Saine B,Uprichard SL
PubMed Article URL:http://dx.doi.org/10.1128/AAC.02601-17

MA1-080 was used in Western Blotting to conclude that unlike for host cellular mRNAs, the entire eIF3 is not required for HCV RNA translation, favoring viral expression under conditions of low eIF3e levels.

Virus: Not Cited
The Journal of biological chemistry (Feb 2020; 295: 1843)
"Unlike for cellular mRNAs and other viral internal ribosome entry sites (IRESs), the eIF3 subunit e is not required for the translational activity of the HCV IRES."
Author(s):Panthu B,Denolli S,Faivre-Moskalenko C,Ohmann T,Cosset FL,Jalinot P
PubMed Article URL:http://dx.doi.org/10.1074/jbc.RA119.009502

MA1-080 was used in Western Blotting to determine the role of microRNA-122 in hepatocyte intrinsic innate immunity.

Virus: Not Cited
Antimicrobial agents and chemotherapy (Oct 2009; 53: 4311)
"Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening."
Author(s):Yi X,Saine B,Uprichard SL
PubMed Article URL:http://dx.doi.org/10.1128/AAC.009502

MA1-080 was used in western blot to develop a cell-based FRET assay for high-throughput anti-HCV compound screening.

Virus: 1:1000
Antimicrobial agents and chemotherapy (Oct 2009; 53: 4311)
"Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening."
Author(s):Yi X,Saine B,Uprichard SL
PubMed Article URL:http://dx.doi.org/10.1128/AAC.009502

MA1-080 was used in western blot to study the role of elevated phosphatidylinositol 4-phosphate levels in promoting HCV infection and the involvement of ARF1 and GBF1.

Mouse / Not Cited
PloS one (Aug 2012; 7:)
"ARF1 and GBF1 generate a PI4P-enriched environment supportive of hepatitis C virus replication."
Author(s):Zhang L,Hong Z,Lin W,Shao RX,Goto K,Hsu VW,Chung RT
PubMed Article URL:http://dx.doi.org/10.1371/journal.pone.0032135

55 Immunochemistry References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MA1-080 was used in immunocytochemistry to study the therapeutic potential of antiviral nanoparticles containing a HCV NSSA-based peptide in HIV/HCV co-infected patients

Virus / Not Cited

Biomaterials (May 2013; 34: 3846)

"Antiviral peptide nanocomplexes as a potential therapeutic agent for HIV/HCV co-infection."

PubMed Article URL: http://dx.doi.org/10.1016/j.biomaterials.2013.01.026

MA1-080 was used in immunocytochemistry and western blot to study the role of the NS2 viral protein in HCV infectivity

Virus / 1:300-1:400

PLoS pathogens (May 2009; 5:)

"Trans-complementation of an NS2 defect in a late step in hepatitis C virus (HCV) particle assembly and maturation."
Author(s): Yi M, Ma Y, Yates J, Lemon SM

PubMed Article URL: http://dx.doi.org/10.1371/journal.ppat.1000403

MA1-080 was used in immunocytochemistry to study the ability of 5-(perylen-3-yl)ethynyl-arabino-uridine to inhibit the fusion of enveloped viruses by mimicking the shape and amphipathicity of phospholipids

Virus / 1:300

Journal of virology (Apr 2013; 87: 3640)

"5-(Perylen-3-yl)ethynyl-arabino-uridine (aUY11), an arabino-based rigid amphipathic fusion inhibitor, targets virion envelope lipids to inhibit fusion of influenza virus, hepatitis C virus, and other enveloped viruses."
Author(s): Colitpis CC, Ustinov AV, Epand RF, Epand RM, Korshun VA, Schang LM

PubMed Article URL: http://dx.doi.org/10.1128/JVI.02882-12

MA1-080 was used in immunocytochemistry to investigate hepatitis C virus cycle in Matrigel-embedded Huh-7.5 cells cultures

Virus / Not Cited

Virology (Mar 2012; 425: 31)

"Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle."

MA1-080 was used in immunocytochemistry to study HCV lipoviral formation and the role of interactions between viral glucoproteins and the ApoE and ApoB apolipoproteins

Virus / Not Cited

The Journal of biological chemistry (Jul 2014; 289: 18904)

"The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles."
Author(s): Boyer A, Dumans A, Beaumont E, Etienne L, Roingeard P, Meunier JC

PubMed Article URL: http://dx.doi.org/10.1074/jbc.M113.538256

MA1-080 was used in immunocytochemistry to explore the various cytopathic effects of and cellular responses to HCV proteins

Virus / 1:1,000

PloS one (Jul 2012; 6:)

"Persistent expression of hepatitis C virus non-structural proteins leads to increased autophagy and mitochondrial injury in human hepatoma cells."
Author(s): Chu VC, Bhattacharya S, Nomoto A, Lin J, Zaidi SK, Oberley TD, Weinman SA, Azhar S, Huang TT

PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0028551

MA1-080 was used in immunocytochemistry to design and characterize novel IFN-lambda analogs as antiviral biologics

Virus / Not Cited

Drug design, development and therapy (Oct 2016; 10: 163)

"Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes."
Author(s): Yu D, Zhao M, Dong L, Zhao L, Zou M, Sun H, Zhang M, Liu H, Zou Z

PubMed Article URL: http://dx.doi.org/10.2147/DDDT.S91455

MA1-080 was used in immunocytochemistry to study the role of IGF2BP1 downregulation in the anti-HCV activity of the IFN-alpha/IL-28B-regulated let7 miRNA

Virus / Not Cited

Journal of virology (Sep 2013; 87: 9707)

"High-throughput profiling of alpha interferon- and interleukin-28B-regulated microRNAs and identification of let-7s with anti-hepatitis C virus activity by targeting IGF2BP1."

PubMed Article URL: http://dx.doi.org/10.1128/JVI.00802-13

MA1-080 was used in immunocytochemistry and western blot to study the role of the HCV p7 protein in preventing the premature degradation of HCV glycoproteins during virus generation.

Virus research (Sep 2013; 176: 199)
"Evidence suggesting that HCV p7 protects E2 glycoprotein from premature degradation during virus production."
Author(s): Atoom AM, Jones DM, Russell RS
PubMed Article URL: http://dx.doi.org/10.1016/j.viruses.2013.06.008

MA1-080 was used in immunocytochemistry to study the secretion of HCV and the roles played by phosphatidylinositol 4-phosphate and GOLPH3.

The Journal of biological chemistry (Aug 2012; 287: 27637)
"Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in hepatitis C virus secretion."
Author(s): Bishê B, Syed GH, Field SJ, Siddiqui A
PubMed Article URL: http://dx.doi.org/10.1074/jbc.M112.346569

MA1-080 was used in immunocytochemistry and western blot to study the AMP kinase-independent inhibition of HCV replication by metformin and glucose.

Microbiology and immunology (Nov 2011; 55: 774)
"Inhibition of hepatitis C virus replication through adenosine monophosphate-activated protein kinase-dependent and -independent pathways."
Author(s): Nakashima K, Takeuchi K, Chihara K, Hotta H, Sada K
PubMed Article URL: http://dx.doi.org/10.1111/j.1348-0421.2011.00382.x

MA1-080 was used in flow cytometry and immunocytochemistry to determine the gene alternation and association between different viral loads of hepatitis C virus-infected cells.

The Kaohsiung journal of medical sciences (Oct 2016; 32: 487)
"Distinct subpopulations of hepatitis C virus infectious cells with different levels of intracellular hepatitis C virus core protein."
PubMed Article URL: http://dx.doi.org/10.1016/j.kjms.2016.08.002

MA1080 was used in immunocytochemistry to study the anti-viral activity of polysaturated liposomes.

Proceedings of the National Academy of Sciences of the United States of America (Oct 2010; 107: 17176)
"Polysaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing cholesterol levels in infected cells."
Author(s): Pollock S, Nichita NB, Böhmer A, Radulescu C, Dwek RA, Zitzmann N
PubMed Article URL: http://dx.doi.org/10.1073/pnas.1009445107

MA1-080 was used in immunocytochemistry and western blot to develop a system for the production of HCV genotype 1a virus in cultured human hepatoma cells.

Proceedings of the National Academy of Sciences of the United States of America (Feb 2006; 103: 2310)
"Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells."
Author(s): Yi M, Villanueva RA, Thomas DL, Wakita T, Lemon SM
PubMed Article URL: http://dx.doi.org/10.1073/pnas.0510727103

MA1-080 was used in immunocytochemistry to study the role of HCV E2 protein in plasmacytoid DCs.

Blood (Nov 2012; 120: 4544)
"HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells."
PubMed Article URL: http://dx.doi.org/10.1182/blood-2012-02-413286

MA1-080 was used in immunocytochemistry to investigate the non-productive infection of astrocytes by HCV and the induction of neurotoxic IL-18 expression.

Journal of neurovirology (Jun 2014; 20: 278)
"Hepatitis C virus (HCV) interaction with astrocytes: nonproductive infection and induction of IL-18."
Author(s): Liu Z, Zhao F, He JJ
PubMed Article URL: http://dx.doi.org/10.1007/s13365-014-0245-7
MA1-080 was used in immunocytochemistry to study the HCV NS5A protein during productive viral infection using dynamic imaging techniques.

Journal of virology (Apr 2014; 88: 3636)
"Dynamic imaging of the hepatitis C virus NS5A protein during a productive infection."
Author(s): Eyre NS, Fiches GN, Aloia AL, Helbig KJ, McCartney EM, McErlean CS, Li K, Aggarwal A, Turville SG, Beard MR
PubMed Article URL: http://dx.doi.org/10.1128/JVI.02490-13

MA1-080 was used in immunocytochemistry and western blot to study the mechanisms underlying the modulation of hepatic lipid metabolism and the inhibition of HCV replication by miRNA-27a.

Journal of virology (May 2013; 87: 5270)
"MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells."
PubMed Article URL: http://dx.doi.org/10.1128/JVI.03022-12

MA1-080 was used in immunocytochemistry to study the role of exosomes in the transfer of HCV between human hepatoma cells.

Journal of virology (Aug 2013; 86: 11919)
"Exosome-mediated transmission of hepatitis C virus between human hepatoma HuH7.5 cells."
PubMed Article URL: http://dx.doi.org/10.1128/JVI.01066-12

MA1-080 was used in immunocytochemistry to study the ability of exogenously expressed host factors to enable the entire HCV life cycle to be reconstituted in human non-hepatic cells.

"Exosome-mediated transmission of hepatitis C virus between human hepatoma HuH7.5 cells."
PubMed Article URL: http://dx.doi.org/10.1073/pnas.1221899110

MA1-080 was used in immunocytochemistry to investigate the anti-viral effect of tetherin against hepatitis C virus release from infected hepatocytes.

Innate immunity (Jun 2012; 18: 398)
"Tetherin has negligible activity in restricting hepatitis C virus in hepatocytes."
Author(s): Ye L, Wang X, Li J, Liu J, Ramirez SH, Wu J, Ho W
PubMed Article URL: http://dx.doi.org/10.1177/1753425911412984

MA1-080 was used in Immunocytochemistry-immunofluorescence to investigate the paradoxical induction of an innate immune response by HCV despite a multitude of mechanisms combating the host response.

"HCV and flaviviruses hijack cellular mechanisms for nuclear STAT2 degradation: Up-regulation of PDLIM2 suppresses the innate immune response."
Author(s): Joyce MA, Berry-Wynne KM, dos Santos T, Addison WR, McFarlane N, Hobman T, Tyrrell DL
PubMed Article URL: http://dx.doi.org/10.1371/journal.ppat.1007949

MA1-080 was used in Immunocytochemistry to demonstrate a specific function for RACK1 in selective mRNA translation and uncover a target for the development of broad antiviral intervention.

Cell (Nov 2014; 159: 1086)
"RACK1 controls IRS-mediated translation of viruses."
PubMed Article URL: http://dx.doi.org/10.1016/j.cell.2014.10.041

MA1-080 was used in immunocytochemistry to develop a cell culture and infection system for HCV

Virus / 1:300
Nature protocols (Oct 2007; 1: 2334)
"Cell culture and infection system for hepatitis C virus."
Author(s):Kato T, Date T, Murayama A, Morikawa K, Akazawa T, Wakita T
PubMed Article URL:http://dx.doi.org/10.1038/nprot.2006.395

Virus / Not Cited
MA1-080 was used in immunocytochemistry to investigate the role of DDX3X in productive HCV infection

Journal of virology (May 2015; 89: 5462)
"Dynamic Interaction of Stress Granules, DDX3X, and IKK- Mediates Multiple Functions in Hepatitis C Virus Infection."
Author(s):Pêne V, Li Q, Sodroski C, Hsu CS, Liang TJ
PubMed Article URL:http://dx.doi.org/10.1128/JVI.03197-14

Virus / 1:500
MA1-080 was used in immunocytochemistry to study the mechanisms underlying the inhibition of hepatocyte HCV replication by RIG-1 signaling in hepatic stellate cells

Innate immunity (Sep 2013; 19: 193)
"Retinoic acid inducible gene-I (RIG-I) signaling of hepatic stellate cells inhibits hepatitis C virus replication in hepatocytes."
Author(s):Wang Y, Ye L, Wang X, Li J, Song L, Ho W
PubMed Article URL:http://dx.doi.org/10.1177/1753425912460414

Virus / 1:500-1:1,000
MA1-080 was used in immunocytochemistry to investigate cell culture-adaptive NSSB mutations during subculturing of HCV JFH1 in Huh-7 cells

Virus research (Sep 2009; 144: 107)
"Cell culture-adaptive mutations in the NS5B gene of hepatitis C virus with delayed replication and reduced cytotoxicity."
Author(s):Kang JL, Kim JP, Wakita T, Ahn BY

Virus / Not Cited
MA1-080 was used in immunocytochemistry to investigate the mechanism for the effect of hepatitis C virus on DNA repair inhibition

Hepatology (Baltimore, Md.) (Mar 2010; 51: 741)
"Hepatitis C virus-induced up-regulation of protein phosphatase 2A inhibits histone modification and DNA damage repair."
Author(s):Duong FH, Christen V, Lin S, Heim MH
PubMed Article URL:http://dx.doi.org/10.1002/hep.23388

Virus / Not Cited
MA1080 was used in immunocytochemistry to describe a method to preserve the native structure of lipo-viro particles for characterization

"Ultrastructural organisation of HCV from the bloodstream of infected patients revealed by electron microscopy after specific immunocapture."
PubMed Article URL:http://dx.doi.org/10.1136/gutjnl-2016-311726

Virus / Not Cited
MA1-080 was used in immunocytochemistry, immunoprecipitation, and western blot to study HCV-induced hepatic steatosis and HCV replication and the role of LXR-alpha

Laboratory investigation; a journal of technical methods and pathology (Aug 2012; 92: 1191)
"Liver X receptor -mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication."
PubMed Article URL:http://dx.doi.org/10.1038/labinvest.2012.88

Virus / Not Cited
MA1-080 was used in immunocytochemistry to study the role of SREBPs and PCSK9 in the mechanism by which HCV upregulates expression of the LDL receptor to promote propagation of the virus

Journal of virology (Mar 2014; 88: 2519)
"Hepatitis C virus stimulates low-density lipoprotein receptor expression to facilitate viral propagation."
Author(s):Syed GH, Tang H, Khan M, Hassanein T, Liu J, Siddiqui A
PubMed Article URL:http://dx.doi.org/10.1128/JVI.02727-13
MA1-080 was used in immunocytochemistry to study the suppression of TLR3 signaling and IFN-lambda1 expression by HCV and a number of HCV non-structural proteins in human hepatoma cells

Virus / Not Cited

Innate immunity (Jan 2014; 20: 3)

"Hepatitis C virus impairs TLR3 signaling and inhibits IFN-1 expression in human hepatoma cell line."

Author(s): Wang Y, Li J, Wang X, Ye L, Zhou Y, Thomas RM, Ho W

PubMed Article URL: http://dx.doi.org/10.1177/1753425913478991

MA1-080 was used in immunocytochemistry to use a combination of proteomics and functional genomics to identify novel HCV-host interactions

Virus / 1:200

Molecular & cellular proteomics : MCP (Jan 2014; 13: 184)

"Elucidating novel hepatitis C virus-host interactions using combined mass spectrometry and functional genomics approaches."

Author(s): Germain MA, Chatel-Chaix L, Gagné B, Bonneil É, Thibault P, Pradezynski F, de Chassey B, Meyniel-Schicklin L, Lotteau V, Baril M, Lamarre D

PubMed Article URL: http://dx.doi.org/10.1074/mcp.M113.030155

MA1-080 was used in immunocytochemistry to investigate the incorporation of CD59 into HCV virions

Virus / 1:500

Hepatology (Baltimore, Md.) (Feb 2012; 55: 354)

"CD59 incorporation protects hepatitis C virus against complement-mediated destruction."

PubMed Article URL: http://dx.doi.org/10.1002/hep.24668

MA1-080 was used in immunocytochemistry to investigate the effect of HCV infection on chronic ER stress and unfolded protein response

Virus / Not Cited

PloS one (Jan 2012; 6:)

"HCV causes chronic endoplasmic reticulum stress leading to adaptation and interference with the unfolded protein response."

Author(s): Merquiol E, Uzi D, Mueller T, Goldenberg D, Nahmias Y, Xavier RJ, Tirosh B, Shibiolet O

PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0024660

MA1-080 was used in immunocytochemistry to study the involvement of FOXO3 in the effect of hepatitis C and alcohol on liver injury

Virus / Not Cited

The American journal of pathology (Dec 2013; 183: 1803)

"Hepatitis C and alcohol exacerbate liver injury by suppression of FOXO3."

PubMed Article URL: http://dx.doi.org/10.1016/j.ajpath.2013.08.013

MA1-080 was used in immunocytochemistry and western blot to study the role of decreased STAT1 phosphorylation in the mechanism by which PP2A blocks the anti-HCV activity of IFN-alpha

Virus / Not Cited

Journal of viral hepatitis (Sep 2013; 20: 612)

"Protein phosphatase 2A impairs IFN-induced antiviral activity against the hepatitis C virus through the inhibition of STAT1 tyrosine phosphorylation."

Author(s): Shanker V, Trincucci G, Heim HM, Duong HT

PubMed Article URL: http://dx.doi.org/10.1111/jvhl.12083

MA1-080 was used in immunocytochemistry and western blot to study the induction of pro-oncogenic and pro-fibrotic phenotypes in cells infected with HCV and the role of FAK

Virus / Not Cited

PloS one (Feb 2013; 7:)

"Focal adhesion kinase (FAK) mediates the induction of pro-oncogenic and pro-fibrogenic phenotypes in hepatitis C virus (HCV)-infected cells."

Author(s): Alisi A, Arciello M, Petrini S, Conti B, Missale G, Balsamo C

PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0044147

MA1-080 was used in immunocytochemistry to study the suppression of TLR3 signaling and IFN-lambda1 expression by HCV and a number of HCV non-structural proteins in human hepatoma cells

Virus / Not Cited

Antimicrobial agents and chemotherapy (Jun 2011; 55: 2566)

"Inhibition of hepatitis C virus replicon RNA synthesis by PSI-352938, a cyclic phosphate prodrug of -D-2'-deoxy-2'--fluoro-2'--C-methylguanosine."

PubMed Article URL: http://dx.doi.org/10.1128/AAC.00032-11
MA1-080 was used in immunocytchemistry to study the mechanism for the drug-resistance of direct-acting antiviral agents in chronic hepatitis C

Virus / 1:300

Antimicrobial agents and chemotherapy (Apr 2012; 56: 1907)

"Ketoamide resistance and hepatitis C virus fitness in val55 variants of the NS3 serine protease."

Author(s): Welsch C, Schweizer S, Shimakami T, Domingues FS, Kim S, Lemon SM, Anes I

PubMed Article URL: http://dx.doi.org/10.1128/AAC.05184-11

Virus / 1:300

MA1-080 was used in immunocytchemistry to investigate the effect of a fragment of hepatitis C virus E2 protein on hepatitis C virus entry

Antiviral research (May 2010; 86: 172)

"A peptide derived from hepatitis C virus E2 envelope protein inhibits a post-binding step in HCV entry."

PubMed Article URL: http://dx.doi.org/10.1016/j.antiviral.2010.02.0316

Virus / 1:300

European journal of physiology. Gastrointestinal and liver physiology (Jun 2016; 310: G930)

"Role of apoptotic hepatocytes in HCV dissemination: regulation by acetatehydrode."

Author(s): Ganesan M, Natarajan SK, Zhang J, Mott J, Poluektova LI, McVicker BL, Kharbanda KK, Tuma DJ, Osna NA

PubMed Article URL: http://dx.doi.org/10.1152/ajpgi.00021.2016

Virus / 1:300

American journal of physiology. Gastrointestinal and liver physiology (Jan 2013; 92: 12)

"The kinase inhibitor Sorafenib impairs the antiviral effect of interferon on hepatitis C virus replication."

Author(s): Himmelbach K, Hildt E

PubMed Article URL: http://dx.doi.org/10.1016/j.ejcb.2013.01.004

Virus / 3 µg/mL

PLOS pathogens (Sep 2010; 6: 1)

"A novel small molecule inhibitor of hepatitis C virus entry."

PubMed Article URL: http://dx.doi.org/10.1371/journal.ppat.1001086

Virus / Not Cited

PLOS one (Dec 2011; 6: 1)

"Generation of a cell culture-adapted hepatitis C virus with longer half life at physiological temperature."

Author(s): Kim CS, Keum SJ, Jiang SK

PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0022808

Virus / Not Cited

PLoS pathogens (Sep 2010; 6: 1)

"A novel small molecule inhibitor of hepatitis C virus entry."

PubMed Article URL: http://dx.doi.org/10.1371/journal.ppat.1001086

Virus / Not Cited

PLoS pathogens (Nov 2010; 6: 1)

"The kinase inhibitor Sorafenib impairs the antiviral effect of interferon on hepatitis C virus replication."

Author(s): Himmelbach K, Hildt E

PubMed Article URL: http://dx.doi.org/10.1371/journal.ppat.1001086

Virus / Not Cited

The Journal of infectious diseases (Feb 2012; 205: 656)

"Evaluation of ITX 5061, a scavenger receptor B1 antagonist: resistance selection and activity in combination with other hepatitis C virus antivirals."

Author(s): Zhu H, Wong-Staal F, Lue H, Syder A, McKelvy J, Schooley RT, Wyles DL

PubMed Article URL: http://dx.doi.org/10.1093/infdis/jir802

Virus / 1:300

The Journal of infectious diseases (Feb 2012; 205: 656)

"Evaluation of ITX 5061, a scavenger receptor B1 antagonist: resistance selection and activity in combination with other hepatitis C virus antivirals."

Author(s): Zhu H, Wong-Staal F, Lee H, Syder A, McKelvy J, Schooley RT, Wyles DL

PubMed Article URL: http://dx.doi.org/10.1093/infdis/jir802

Virus / Not Cited

Journal of medical virology (Jun 2011; 83: 1005)

"Effects of hepatitis C virus on suppressor of cytokine signaling mRNA levels: comparison between different genotypes and core protein sequence analysis."

Author(s): Pascarella S, Clement S, Guiloux K, Conzelmann S, Penin F, Negro F

PubMed Article URL: http://dx.doi.org/10.1002/jmv.22072
MA1-080 was used in immunocytochemistry, immunoprecipitation, and western blot to study the role of the DGAT-1-HCV NS5A interaction in the localization of NS5A to lipid droplets and the implications for therapeutic intervention.

Species / Dilution

Summary

MA1-080 was used in immunocytochemistry to study the role of the interaction between TIP47 and Rab9 in the release of HCV viral particles.

1 Immunoprecipitation References

Species / Dilution

Summary

MA1-080 was used in Immunoprecipitation to study the assembly mechanisms of Hepatitis C virus in association with endoplasmic reticulum detergent-resistant membranes.

Virus / 3 µg/mL

Summary

MA1-080 was used in immunocytochemistry to develop an HCV growth assay suitable for the rapid screening of compound libraries for molecules with antiviral activity.

Virus / Not Cited

Summary

MA1-080 was used in immunocytochemistry and western blot to study the role of the interaction between TIP47 and Rab9 in the release of HCV viral particles.

4 Flow Cytometry References

Species / Dilution

Summary

MA1-080 was used in Immunoprecipitation to study the assembly mechanisms of Hepatitis C virus in association with endoplasmic reticulum detergent-resistant membranes.

Virus / Not Cited

Summary

MA1-080 was used in immunocytochemistry to evaluate a hepatitis C virus tissue culture model.

Virus / Not Cited

Summary

MA1-080 was used in immunocytochemistry to assess the effects of human immunodeficiency virus and hepatitis C virus infections on the phenotypic changes and fibrogenic expression in LX-2 cells.

Virus / 1:300

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

This warranty does not extend to anyone other than the Buyer. Any model or sample furnished to Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.

Species / Dilution

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.

Virus / Not Cited

Summary

MA1-080 was used in Immunocytochemistry to study the role of lipoperoxidation in infection with hepatitis C virus.
MA1-080 was used in Flow Cytometry to study the upregulation of hepatocyte cell surface expression of CD55 in response to HCV infection and the significance for immune evasion.

2 Miscellaneous PubMed References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus / 1:100</td>
<td>MA1-080 was used in Flow cytometry/Cell sorting to identify C19orf66 as an interferon-stimulated gene that inhibits Dengue virus replication.</td>
</tr>
</tbody>
</table>

2 ELISA References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus / 1:100</td>
<td>MA1-080 was used in Flow cytometry to develop a cellular HCV infection FRET assay for antiviral compound screening</td>
</tr>
</tbody>
</table>

3 Immunohistochemistry References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus / Not Cited</td>
<td>MA1-080 was used in immunohistochemistry to study changes in P-body composition following HCV infection</td>
</tr>
<tr>
<td>Virus / 1:200</td>
<td>MA1-080 was used in immunohistochemistry to study the role of inhibition of IRES entry in the synergistic HCV antiviral activity of IFN plus ribavirin</td>
</tr>
<tr>
<td>Virus / 1:10</td>
<td>MA1-080 was used in immunohistochemistry to study the effect of hepatitis C virus core protein on DNA repair in hepatoma cells</td>
</tr>
<tr>
<td>Virus / Not Cited</td>
<td>MA1-080 was used in immunohistochemistry to study the in vitro anti-viral activity of a novel anti-HCV compound likely targeting NSSA on the basis of resistance selection experiments</td>
</tr>
</tbody>
</table>

References

MA1-080 was used in ELISA to study the in vitro anti-viral activity of a novel anti-HCV compound likely targeting NSSA on the basis of resistance selection experiments

Antimicrobial agents and chemotherapy (Aug 2014; 58: 4431)

"In vitro activity and resistance profile of samatasvir, a novel NSSA replication inhibitor of hepatitis C virus."

Author(s): Bilello JP, Lallos LB, McCarville JF, La Colla M, Serra I, Chapron C, Gillum JM, Pierra C, Standring DN, Seifer M

PubMed Article URL: http://dx.doi.org/10.1128/AAC.02777-13

MA1-080 was used in immunohistochemistry to study the effect of hepatitis C virus core protein on DNA repair in hepatoma cells

Cancer letters (Jun 2004; 209: 197)

"Expression of hepatitis C virus core protein impairs DNA repair in human hepatoma cells."

Author(s): van Pett JF, Severi T, Crabbe T, Eetveldt AV, Verslype C, Roskams T, Fever J

PubMed Article URL: http://dx.doi.org/10.1016/j.canlet.2003.11.035

MA1-080 was used in immunohistochemistry to study the role of inhibition of IRES entry in the synergistic HCV antiviral activity of IFN plus ribavirin

PloS one (Apr 2014; 8:)

"Interferon and ribavirin combination treatment synergistically inhibit HCV internal ribosome entry site mediated translation at the level of polyribosome formation."

PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0072791

MA1-080 was used in immunohistochemistry to study changes in P-body composition following HCV infection

Journal of virology (Aug 2012; 86: 8740)

"Hepatitis C virus infection alters P-body composition but is independent of P-body granules."

Author(s): Pérez-Vilaró G, Scheller N, Saludes V, Díez J