SUMO1 Monoclonal Antibody (21C7)

Catalog Number 33-2400

Product data sheet

<table>
<thead>
<tr>
<th>Details</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>100 µg</td>
</tr>
<tr>
<td>Host/Isotope</td>
<td>Mouse / IgG1, kappa</td>
</tr>
<tr>
<td>Class</td>
<td>Monoclonal</td>
</tr>
<tr>
<td>Type</td>
<td>Antibody</td>
</tr>
<tr>
<td>Clone</td>
<td>21C7</td>
</tr>
<tr>
<td>Immunogen</td>
<td>Full length recombinant GMP-1</td>
</tr>
<tr>
<td>Conjugate</td>
<td>Unconjugated</td>
</tr>
<tr>
<td>Form</td>
<td>Liquid</td>
</tr>
<tr>
<td>Concentration</td>
<td>0.5 mg/mL</td>
</tr>
<tr>
<td>Storage buffer</td>
<td>PBS, pH 7.4</td>
</tr>
<tr>
<td>Contains</td>
<td>0.1% sodium azide</td>
</tr>
<tr>
<td>Storage Conditions</td>
<td>-20°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species Reactivity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Species reactivity</td>
<td>Human, Mouse, Rat</td>
</tr>
<tr>
<td>Published species</td>
<td>Mink, Rat, Non-human primate, Hamster, Mouse, Human, Not Applicable, Rhesus monkey, Xenopus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tested Applications</th>
<th>Dilution *</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA (ELISA)</td>
<td>0.1-1.0 µg/mL</td>
</tr>
<tr>
<td>Immunohistochemistry (IHC)</td>
<td>Assay-dependent</td>
</tr>
<tr>
<td>Western Blot (WB)</td>
<td>1-3 µg/mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Published Applications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Blot (WB)</td>
<td>See 45 publications below</td>
</tr>
<tr>
<td>in situ PLA (PLA)</td>
<td>See 1 publications below</td>
</tr>
<tr>
<td>Immunoprecipitation (IP)</td>
<td>See 10 publications below</td>
</tr>
<tr>
<td>Immunocytchemistry (ICC/IF)</td>
<td>See 20 publications below</td>
</tr>
<tr>
<td>Immunohistochemistry (IHC)</td>
<td>See 7 publications below</td>
</tr>
<tr>
<td>Immunohistochemistry (Paraffin) (IHC (P))</td>
<td>See 1 publications below</td>
</tr>
<tr>
<td>ELISA (ELISA)</td>
<td>See 1 publications below</td>
</tr>
<tr>
<td>Miscellaneous PubMed (Misc)</td>
<td>See 17 publications below</td>
</tr>
<tr>
<td>Gel Shift (GS)</td>
<td>See 1 publications below</td>
</tr>
</tbody>
</table>

* Suggested working dilutions are given as a guide only. It is recommended that the user titrate the product for use in their own experiment using appropriate negative and positive controls.

Product specific information

This monoclonal antibody can be used to specifically detect the unconjugated (~17 kDa) form of SUMO-1/GMP-1, as well as proteins covalently ligated to GMP-1 (e.g., RanGAP-1). Lysates tested: Rat liver nuclear envelopes, total lysates derived from NIH 3T3 and HeLa cells.

Background/Target Information

SUMO1 is an ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. Covalent attachment, via an isopeptide bond, to its substrates requires prior activation by the E1 complex SAE1-SE2 and linkage to the E2 enzyme UBE2I, and can be promoted by E3 ligases such as Pias1-4, RanBP2 or Cbx4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. SUMO1 is involved, for instance, in targeting RANGAP1 to the nuclear pore complex protein RANBP2. Polymeric SUMO1 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins. SUMO1 may also regulate a network of genes involved in palate development. Mutations in the gene can result in non-syndromic orofacial cleft 10.

SUMO1 Antibody (33-2400) in WB

Western blot analysis of GMP-1 modified RanGAP-1 (90kDa) protein in rat liver nuclei using Ms x GMP-1.
<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable / Not Cited</td>
<td>33-2400 was used in western blot to elucidate how p14ARF alterations contribute to susceptibility to cutaneous melanoma</td>
</tr>
<tr>
<td></td>
<td>Cell cycle (Georgetown, Tex.) (Apr 2005; 4; 597)</td>
</tr>
<tr>
<td></td>
<td>“p14ARF Interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners.”</td>
</tr>
<tr>
<td></td>
<td>Author(s): Rizos H, Woodruff S, Kerford RF</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.4161/cc.4.4.1597</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>33-2400 was used in western blot to study the effect of SUMOylation on chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor</td>
</tr>
<tr>
<td></td>
<td>Nucleic acids research (Feb 2014; 42; 1575)</td>
</tr>
<tr>
<td></td>
<td>“SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor.”</td>
</tr>
<tr>
<td></td>
<td>Author(s): Paakinnaho V, Kalkkonen S, Makkonen H, Benes V, Palvimo JJ</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1093/nar/gkt1033</td>
</tr>
<tr>
<td>Not Applicable / Not Cited</td>
<td>33-2400 was used in western blot to report that E1B-55K stimulates the post-translational modification of p53 by SUMOylation</td>
</tr>
<tr>
<td></td>
<td>Cell cycle (Georgetown, Tex.) (Mar 2008; 7; 754)</td>
</tr>
<tr>
<td></td>
<td>“The adenovirus E1B-55K oncoprotein induces SUMO modification of p53.”</td>
</tr>
<tr>
<td></td>
<td>Author(s): Muller S, Dobner T</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.4161/cc.7.6.5495</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>33-2400 was used in western blot to determine the post-translational modifications that regulate KDM5B.</td>
</tr>
<tr>
<td></td>
<td>Epigenetics (Nov 2013; 8; 1162)</td>
</tr>
<tr>
<td></td>
<td>“SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase.”</td>
</tr>
<tr>
<td></td>
<td>Author(s): Bueno MT, Richard S</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.4161/epi.26112</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>33-2400 was used in Western Blotting to study a mechanism for interfering with the SUMO pathway.</td>
</tr>
<tr>
<td></td>
<td>Molecular cell (Nov 2004; 16; 549)</td>
</tr>
<tr>
<td></td>
<td>“A mechanism for inhibiting the SUMO pathway.”</td>
</tr>
<tr>
<td></td>
<td>Author(s): Boggio R, Colombo R, Hay RT, Draetta G, Chiocca S</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1016/j.molcel.2004.11.007</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>33-2400 was used in Western Blot to investigate if small ubiquitin-like modifier-1-dependent regulatory mechanism of oligodendrocyte transcription factor 2 in regulating cancer survival exists.</td>
</tr>
<tr>
<td></td>
<td>Cell death and differentiation (Nov 2020; 27; 3146)</td>
</tr>
<tr>
<td></td>
<td>“Olig2 SUMOylation protects against genotoxic damage response by antagonizing p53 gene targeting.”</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1038/s41418-020-0569-1</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>33-2400 was used in Western Blotting to indicate that glucocorticoid receptor SUMOylation modifies the glucocorticoid signaling during acute cell stress.</td>
</tr>
<tr>
<td></td>
<td>Molecular and cellular biology (Sep 2014; 34; 3202)</td>
</tr>
<tr>
<td></td>
<td>“Electrophilic lipid mediator 15-deoxy-12,14-prostaglandin j2 modifies glucocorticoid signaling via receptor SUMOylation.”</td>
</tr>
<tr>
<td></td>
<td>Author(s): Paakinnaho V, Kalkkonen S, Levonen AL, Palvimo JJ</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1128/MCB.00748-14</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>33-2400 was used in Western Blotting to report that K11 of SUMO2/3 undergoes reversible acetylation with SIRT1 being the K11 deacetylase.</td>
</tr>
<tr>
<td></td>
<td>EMBO reports (Nov 2018; 19;)</td>
</tr>
<tr>
<td></td>
<td>“Acetylation of SUMO2 at lysine 11 favors the formation of non-canonical SUMO chains.”</td>
</tr>
<tr>
<td></td>
<td>Author(s): Gärtnert A, Wagner K, Höller S, Kunz K, Rodriguez MS, Müller S</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.15252/embr.201846117</td>
</tr>
<tr>
<td>Human / Not Cited</td>
<td>332400 was used in western blot to discover SUMO-paralog-specific conjugation of HDAC1</td>
</tr>
<tr>
<td></td>
<td>Methods in molecular biology (Clifton, N.J.) (Jan 2018; 1510; 329)</td>
</tr>
<tr>
<td></td>
<td>“Assessing the Role of Paralog-Specific Sumoylation of HDAC1.”</td>
</tr>
<tr>
<td></td>
<td>Author(s): Citro S, Chiocca S</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1007/978-1-4939-6527-4_24</td>
</tr>
</tbody>
</table>
33-2400 was used in western blot to show that the gamma 1 isoform of PLC associates with nuclear promyelocytic leukemia

"Nuclear phospholipase C gamma: punctate distribution and association with the promyelocytic leukemia protein."
Author(s): Ferguson BJ, Dovey CL, Lilley K, Wuille AH, Rich T
PubMed Article URL:http://dx.doi.org/10.1021/pr060684v

33-2400 was used in Western blotting to provide novel insight into the mechanism underlying SUMOylation-regulated tumor growth in UM.

Cancer science (Feb 2022; 113: 622)
"SUMOylation regulates Rb hyperphosphorylation and inactivation in uveal melanoma."
Author(s): Meng F, Yuan Y, Ren H, Yue H, Xu B, Qian J
PubMed Article URL:http://dx.doi.org/10.1111/cas.15223

33-2400 was used in immunoprecipitation and western blot to report that repression by Net's NID involves sumoylation by Ubc9 and Pias1

Oncogene (Jan 2005; 24: 820)
"Sumoylation of the net inhibitory domain (NID) is stimulated by Pias1 and has a negative effect on the transcriptional activity of Net."
Author(s): Wasylyk C, Criqui-Filipe P, Wasylyk B
PubMed Article URL:http://dx.doi.org/10.1038/sj.ont.1208226

33-2400 was used in immunoprecipitation and western blot to uncover a molecular mechanism involving ALKBH5 PTMs and increased mRNA m6A levels that protect genomic integrity of cells in response to ROS.

Mouse / Not Cited
Nucleic acids research (Jun 2021; 49: 5779)
"Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response."
Author(s): Yu F, Wei J, Cui X, Yu C, Ni W, Bungert J, Wu L, He C, Qian Z
PubMed Article URL:http://dx.doi.org/10.1093/nar/gkb415

33-2400 was used in western blot to investigate the contribution of small ubiquitin-related modifiers to Caenorhabditis elegans development.

Human / Not Cited
Cellular and molecular life sciences : CMLS (Oct 2011; 68: 3219)
"Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans."
PubMed Article URL:http://dx.doi.org/10.1002/jcc.22125

33-2400 was used in western blot to determine how regulations of m TORC1 signalling occurs by SUMOylation of AMPK alpha 1 through Pias4

Not Applicable / 1:1000
Nature communications (Nov 2015; 6:)
"SUMOylation of AMPK1 by Pias4 specifically regulates mTORC1 signalling."
Author(s): Yan Y, Olilia S, Wong IPL, Vallienius T, Palvimo JJ, Vahtomeri K, Mäkelä TP
PubMed Article URL:http://dx.doi.org/10.1038/ncomms9979

33-2400 was used in western blot to identify interaction partners of M2-PK in order to discover novel links between M2-PK and cellular functions

Not Applicable / Not Cited
Journal of cellular biochemistry (May 2009; 107: 293)
"The SUMO-E3 ligase Pias3 targets pyruvate kinase m2."
Author(s): Spoden GA, Morandell D, Ehehalt D, Fiedler M, Jansen-Dürr P, Hermann M, Zwierschke W
PubMed Article URL:http://dx.doi.org/10.1002/jcb.22125

33-2400 was used in western blot to report that SUMOylation controls phosducin stability and function

Not Applicable / Not Cited
The Journal of biological chemistry (Mar 2006; 281: 8357)
"SUMO-1 controls the protein stability and the biological function of phosducin."
Author(s): Klenk C, Humrich J, Quitterer U, Lohe MJ
PubMed Article URL:http://dx.doi.org/10.1074/jbc.M513703200

33-2400 was used in western blot to study the mechanism by which p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase

Not Applicable / Not Cited
The Journal of biological chemistry (Nov 2004; 279: 50157)
"p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase."
Author(s): Woods YL, Xirodimas DP, Prescott AR, Sparks A, Lane DP, Saville MK
PubMed Article URL:http://dx.doi.org/10.1074/jbc.M405414200
Mouse / 1:250
Oncogene (May 2007; 26: 3572)
"E2F regulates DDB2: consequences for DNA repair in Rb-deficient cells."
Author(s): Prost S, Lu P, Caldwell H, Harrison D
PubMed Article URL: http://dx.doi.org/10.1038/sj.onc.1210151

Human / Not Cited
Proceedings of the National Academy of Sciences of the United States of America (Oct 2006; 103: 16272)
"Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progestosterone."
Author(s): Jones MC, Fusi L, Higham JH, Abdell-Hafiz H, Horwitz KB, Lam EW, Brosens JJ
PubMed Article URL: http://dx.doi.org/10.1073/pnas.0603002103

Human / 1:1,000
Small GTPases (Mar 2019; 10: 146)
"Impairments in age-dependent ubiquitin proteostasis and structural integrity of selective neurons by uncoupling Ran GTPase from the Ran-binding domain 3 of Ranbp2 and identification of novel mitochondrial isoforms of ubiquitin-conjugating enzyme E2I (ubc9) and Ranbp2."
Author(s): Patil H, Yoon D, Bhomrick R, Cai Y, Cho KI, Ferreira PA
PubMed Article URL: http://dx.doi.org/10.1080/21541248.2017.1356432

Not Applicable / Not Cited
Journal of virology (Jul 2004; 78: 7803)
"SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication."
Author(s): Nevels M, Brune W, Shenik T

Mouse / 1:1,000
Molecular biology of the cell (Apr 2014; 25: 1202)
"A pathway linking oxidative stress and the Ran GTPase system in progeria."
Author(s): Datta S, Snow CJ, Paschal BM
PubMed Article URL: http://dx.doi.org/10.1091/mbc.E13-07-0430

Mouse / Not Cited
Molecular and cellular biology (Jun 2005; 25: 5171)
"Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development."
Author(s): Yamauchi T, Sharma P, Athanasiou M, Kumar A, Yamada S, Kuehn MR

Not Applicable / Not Cited
Archives of virology (Sep 2005; 150: 1763)
"SUMO-1 modification of the major immediate-early (IE) 1 and 2 proteins of human cytomegalovirus is regulated by different mechanisms and modulates the intracellular localization of the IE1, but not IE2, protein."
Author(s): Sadanari H, Yamada R, Ohnishi K, Matsubara K, Tanaka J
PubMed Article URL: http://dx.doi.org/10.1007/s00705-005-0559-0

Human / Not Cited
33-2400 was used in Western Blot to elucidate the crystal structure of Imp13 in complex with the SUMO E2-conjugating enzyme, Ubc9.

Mouse / Not Cited
33-2400 was used in Western Blot to demonstrate that cAMP signalling attenuates ligand-dependent sumoylation of the progesterone receptor in human endometrial stromal cells.

Human / Not Cited
33-2400 was used in Western blot to prove that SUMO modification of IE1-72 kDa contributes to efficient human cytomegalovirus replication by promoting the accumulation of IE2-86 kDa

Not Applicable / Not Cited
33-2400 was used in Western blot to propose that SUMO modification of IE1-72 kDa contributes to efficient human cytomegalovirus replication by promoting the accumulation of IE2-86 kDa

Mouse / 1:1,000
33-2400 was used in Western Blot to explore the relationship between progerin, the Ran GTPase, and oxidative stress.

Human / Not Cited
33-2400 was used in Western blot to study SUMO-1-modified immediate-early 1 and 2 proteins of human cytomegalovirus

Not Applicable / Not Cited
33-2400 was used in western blot to study SUMO-1-modified immediate-early 1 and 2 proteins of human cytomegalovirus

Mouse / Not Cited
33-2400 was used in Western blot to demonstrate that cAMP signalling attenuates ligand-dependent sumoylation of the progesterone receptor in human endometrial stromal cells.

Human / Not Cited
33-2400 was used in Western blot to demonstrate that cAMP signalling attenuates ligand-dependent sumoylation of the progesterone receptor in human endometrial stromal cells.

Not Applicable / Not Cited
33-2400 was used in Western blot to propose that SUMO modification of IE1-72 kDa contributes to efficient human cytomegalovirus replication by promoting the accumulation of IE2-86 kDa

Mouse / 1:1,000
33-2400 was used in Western Blot to explore the relationship between progerin, the Ran GTPase, and oxidative stress.

Human / Not Cited
33-2400 was used in Western blot to elucidate the crystal structure of Imp13 in complex with the SUMO E2-conjugating enzyme, Ubc9.
33-2400 was used in Western Blotting to show when ubiquitin-proteasome substrates in the nucleus are not degraded due to ubiquitin inhibition, they instead become SUMOylated and accumulate in promyelocytic leukemia protein bodies.

Human / 1:500

The Journal of biological chemistry (Oct 2019; 294: 15218)

"Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies."

Author(s): Sha Z, Blyszcz T, Gonzalez-Prieto R, Vertegaal ACO, Goldberg AL

PubMed Article URL: http://dx.doi.org/10.1074/jbc.RA119.09147

Not Applicable / Not Cited

Oncogene (Apr 2015; 34: 2251)

"Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells."

Author(s): Kobayashi T, Masoumi KC, Massoumi R

PubMed Article URL: http://dx.doi.org/10.1038/onc.2014.159

Rat / Not Cited

The Journal of cell biology (Dec 1996; 135: 1457)

"A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex."

Author(s): Matunis MJ, Coutavas E, Blobel G

PubMed Article URL: http://dx.doi.org/10.1083/jcb.135.6.1457

33-2400 was used in western blot to analyze SUMOylation in neuroblastoma cells as it impairs deubiquitinating activity of CYLD

Not Applicable / 1:500

Scientific reports (May 2016; 6:)

"Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage."

Author(s): Maure JF, Moser SC, Jaffray EG, F Alpi A, Hay RT

PubMed Article URL: http://dx.doi.org/10.1038/srep26178

Not Applicable / Not Cited

Arthritis and rheumatism (Jul 2009; 60: 2065)

"Small ubiquitin-like modifier 1 [corrected] mediates the resistance of prolothesis-loosening fibroblast-like synoviocytes against Fas-induced apoptosis."

PubMed Article URL: http://dx.doi.org/10.1002/art.24633

33-2400 was used in western blot to measure small ubiquitin-like modifier 1 expression in aseptic loosening of prosthesis implants and investigate its role in prosthesis-loosening fibroblast-like synoviocytes

Human / Not Cited

Molecular endocrinology (Baltimore, Md.) (Feb 2013; 27: 212)

"Prostaglandin 15d-PGJ(2) inhibits androgen receptor signaling in prostate cancer cells."

Author(s): Kaikkonen S, Paakinaho V, Sutinen P, Levonen AL, Palvimo JJ

PubMed Article URL: http://dx.doi.org/10.1038/mcp.2012.131

33-2400 was used in Western Blotting to identify 5d-PGJ(2) as an inhibitor of androgen signaling.

Not Applicable / Not Cited

Proceedings of the National Academy of Sciences of the United States of America (Jan 2006; 103: 45)

"PDSM, a motif for phosphorylation-dependent SUMO modification."

Author(s): Hetsch V, Ancker J, Böckstelier HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L

PubMed Article URL: http://dx.doi.org/10.1073/pnas.0503698102

Rat / Not Cited

Molecular endocrinology (Baltimore, Md.) (Feb 2013; 27: 212)

"Prostaglandin 15d-PGJ(2) inhibits androgen receptor signaling in prostate cancer cells."

Author(s): Kaikkonen S, Paakinaho V, Sutinen P, Levonen AL, Palvimo JJ

PubMed Article URL: http://dx.doi.org/10.1038/mcp.2012.131

33-2400 was used in western blot to identify 5d-PGJ(2) as an inhibitor of androgen signaling.

Human / Not Cited

Molecular endocrinology (Baltimore, Md.) (Feb 2013; 27: 212)

"Prostaglandin 15d-PGJ(2) inhibits androgen receptor signaling in prostate cancer cells."

Author(s): Kaikkonen S, Paakinaho V, Sutinen P, Levonen AL, Palvimo JJ

PubMed Article URL: http://dx.doi.org/10.1038/mcp.2012.131

33-2400 was used in western blot to identify 5d-PGJ(2) as an inhibitor of androgen signaling.

Not Applicable / Not Cited

Molecular & cellular proteomics : MCP (Nov 2008; 7: 2107)

"The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle."

Author(s): Schimmel J, Larsen KM, Matic I, van Hagen M, Cox J, Mann M, Andersen JS, Vertegaal AC

PubMed Article URL: http://dx.doi.org/10.1074/mcp.M800025-MCP200

33-2400 was used in Western Blotting to identify Borealin, a component of the chromosomal passenger complex, as a mitotic target of SUMO.

Human / Not Cited

Molecular biology of the cell (Jan 2009; 20: 410)

"RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin."

Author(s): Klein UR, Haindl M, Nigg EA, Muller S

PubMed Article URL: http://dx.doi.org/10.1019/mbc.e08-05-0511
33-2400 was used in western blot to investigate phenobarbital and pregnenolone-induced expression of murine double minute 2

Toxicological sciences : an official journal of the Society of Toxicology (Dec 2006; 94: 272)
"p53-independent induction of rat hepatic Mdm2 following administration of phenobarbital and pregnenolone 16alpha-carbonitrile."
Author(s): Nelson DM, Bhaskaran V, Foster WR, Lehman-McKeeman LD
PubMed Article URL: http://dx.doi.org/10.1093/toxsci/kfl115

33-2400 was used in Western Blotting to isolate and profile new small ubiquitin-like modifier protein substrates exposed to sumoylation in the Xenopus egg extract system.

Molecular & cellular proteomics : MCP (Jul 2014; 13: 1659)
"Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system."
Author(s): Ma L, Aslanian A, Sun H, Jin M, Shi Y, Yates JR, Hunter T
PubMed Article URL: http://dx.doi.org/10.1074/mcp.M113.035626

33-2400 was used in Western Blotting to examine the functions of different Sp3 isoforms

Cellular signalling (Feb 2005; 17: 153)
"Sumoylation of internally initiated Sp3 isoforms regulates transcriptional repression via a Trichostatin A-insensitive mechanism."
Author(s): Spengler ML, Kennett SB, Moorefield KS, Simmons SO, Brattain MG, Horowitz JM
PubMed Article URL: http://dx.doi.org/10.1016/j.cellsig.2004.06.007

33-2400 was used in Western Blotting to provide multiple insights into the genetic basis of POI/DOR.

Maturitas (Nov 2020; 141: 9)
"New insights into the genetic basis of premature ovarian insufficiency: Novel causative variants and candidate genes revealed by genomic sequencing."
PubMed Article URL: http://dx.doi.org/10.1016/j.maturitas.2020.06.004

33-2400 was used in Western Blotting to study the role of androgen receptor SUMOylation in post-testicular sperm maturation and normal reproductive capability of male mice.

Nature communications (Feb 2019; 10:)
"Lack of androgen receptor SUMOylation results in male infertility due to epididymal dysfunction."
PubMed Article URL: http://dx.doi.org/10.1038/s41467-019-08730-z

33-2400 was used in Western blot to investigate the target protein preferences of SUMO-1 and SUMO-2

Molecular & cellular proteomics : MCP (Dec 2006; 5: 2298)
"Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics."
Author(s): Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI
PubMed Article URL: http://dx.doi.org/10.1074/mcp.M113.035626

33-2400 was used in Western Blotting to identify Prox1 as a novel target for small ubiquitin-like modifier 1, causing modulation of its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells.

Journal of cell science (Sep 2009; 122: 3358)
"Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells."
Author(s): Pan MR, Chang TM, Chang HC, Su JL, Wang HW, Hung WC
PubMed Article URL: http://dx.doi.org/10.1242/jcs.050005

Products are warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Product documentation, specifications and/or accompanying package inserts (“Documentation”). No claim of suitability for use in applications regulated by FDA is made. The warranty provided herein is valid only when used by properly trained individuals. Unless otherwise stated in the Documentation, the warranty is limited to one year from date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than the Buyer. Any model or sample furnished to Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.
genes to cells: devoted to molecular & cellular mechanisms (Nov 2004; 9: 1017)
"The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain."
Author(s): Yamashita D, Yamauchi T, Shimizu M, Nakata N, Hirose F, Osumi T
PubMed Article URL: http://dx.doi.org/10.1111/j.1365-2443.2004.00786.x

1 in situ PLA References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| Mouse / Not Cited | Cell death & disease (Oct 2021; 12:)
"CPAP enhances and maintains chronic inflammation in hepatocytes to promote hepatocarcinogenesis."
PubMed Article URL: http://dx.doi.org/10.1038/s41419-021-04295-2

10 Immunoprecipitation References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| Human / Not Cited | Proceedings of the National Academy of Sciences of the United States of America (Dec 2006; 103: 16272)
"Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone."
Author(s): Jones MC, Fusi L, Higham JH, Abdel-Hafiz H, Horwitz KB, Lam EW, Brosens JJ
PubMed Article URL: http://dx.doi.org/10.1073/pnas.0603002103

| Human / Not Cited | Molecular and cellular biology (Oct 2012; 32: 4195)
"Dynamic SUMOylation is linked to the activity cycles of androgen receptor in the cell nucleus."
Author(s): Rytinki M, Kaikkonen S, Sutinen P, Paakinenaho V, Rahkama V, Valpimo JJ
PubMed Article URL: http://dx.doi.org/10.1128/MCB.00753-12

| Human / Not Cited | Proceedings of the National Academy of Sciences of the United States of America (Jun 2004; 101: 8870)
"Modification of the erythroid transcription factor GATA-1 by SUMO-1."
Author(s): Mataro A, Amato M, Mori S, Blasi F, Bachi A
PubMed Article URL: http://dx.doi.org/10.1074/mcp.M900079-MCP200

| Human / Not Cited | Nucleic acids research (Jun 2021; 49: 5779)
"Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response."
Author(s): Yu F, Wei J, Cui X, Yu C, Ni W, Bungert J, Wu L, He C, Qian Z
PubMed Article URL: http://dx.doi.org/10.1093/nar/gkb415

| Not Applicable / Not Cited | Proceedings of the National Academy of Sciences of the United States of America (Jun 2004; 101: 8870)
"Modification of the erythroid transcription factor GATA-1 by SUMO-1."
Author(s): Collavino L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, Del Sal G
PubMed Article URL: http://dx.doi.org/10.1073/pnas.0308605101

| Human / 1:1000 | Oncogene (Aug 2014; 33: 4316)
"SUMOylation inhibits FOXM1 activity and delays mitotic transition."
PubMed Article URL: http://dx.doi.org/10.1038/onc.2013.546

| Mink / Not Cited | The Journal of biological chemistry (Oct 2005; 280: 35477)
"Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin."
Author(s): Long J, Zuo D, Park M
PubMed Article URL: http://dx.doi.org/10.1074/jbc.M504477200

| Non-human primate / Not Cited | "CPAP enhances and maintains chronic inflammation in hepatocytes to promote hepatocarcinogenesis."
PubMed Article URL: http://dx.doi.org/10.1038/s41419-021-04295-2

| Human / Not Cited | "CPAP enhances and maintains chronic inflammation in hepatocytes to promote hepatocarcinogenesis."
PubMed Article URL: http://dx.doi.org/10.1038/s41419-021-04295-2

Products are warranted to operate or perform satisfactorily in conformance with published Product specifications in effect at the time of sale, as set forth in the Production documentation, specifications and/or accompanying package inserts ("Documentation"). All claims of suitability for use in applications regulated by FDA are made. The warranty is limited to one year from date of shipment when the Product is subject to normal, proper and intended usage. This warranty does not extend to anyone other than the Buyer. Any model or sample furnished to Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.

NO OTHER WARRANTIES, EXPRESS OR IMPLIED, ARE GRANTED INCLUDING WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-INFRINGEMENT. BUYERS EXCLUSIVE REMEDY FOR NON-COMPLYING PRODUCTS IS DURING THE WARRANTY PERIOD IS LIMITED TO REPAIR, REPLACEMENT OR REFUND FOR THE NON-COMPLYING PRODUCT AT SELLER’S OPTION. THERE IS NO OBLIGATION TO REPAIR, REPLACE OR REFUND FOR PRODUCTS AS THE RESULT OF (A) ACCIDENT, DAMAGE OR ENGAGEMENT OF FORCE MAJEURE, IN MISTAKE, FAULT OR NEGLIGENCE OF OR BY BUYER; (B) USE OF THE PRODUCTS IN A MANNER FOR WHICH THEY WERE NOT DESIGNED. (C) IMPROPER STORAGE AND HANDLING OF THE PRODUCTS; IF USER, ALTHOUGH EXPRESSLY INSTRUCTED ON THE PRODUCT OR IN THE DOCUMENTATION ACCOMPANYING THE PRODUCT, THE PRODUCT IS INTENDED FOR RESEARCH ONLY AND IS NOT TO BE USED FOR ANY OTHER PURPOSE, INCLUDING WITHOUT LIMITATION, UNAUTHORIZED COMMERCIAL USES, IN VITRO DIAGNOSTIC USES, EX VIVO OR IN VIVO THERAPEUTIC USES, OR ANY TYPE OF CONSUMPTION BY OR APPLICATION TO HUMANS OR ANIMALS

Thermo Fisher Scientific
3747 N. Meridian Road
Rockford, IL 61012 USA

thermoscientific.com/contactus
Not Applicable / Not Cited

Cancer research (Nov 2004; 64: 7846)
"SUMO-1 modification of the Wilms' tumor suppressor WT1."
Author(s): Smolen GA, Vassileva MT, Wells J, Matunis MJ, Haber DA
PubMed Article URL:http://dx.doi.org/10.1158/0008-5472.CAN-04-1502

Rhesus monkey / Not Cited

Molecular endocrinology (Baltimore, Md.) (Oct 2014; 28: 1719)
"Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation."
Author(s): Sutinen P, Rahkama V, Rytinki M, Paalvio JJ
PubMed Article URL:http://dx.doi.org/10.1210/me.2014-1035

Mouse / Not Cited

"SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4."
Author(s): Leavenworth JW, Ma X, Mo YY, Pauza ME
PubMed Article URL:http://dx.doi.org/10.4049/jimmunol.0803671

20 Immunocytochemistry References

<table>
<thead>
<tr>
<th>Species</th>
<th>Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable / / 1:50</td>
<td>/ Not Cited</td>
<td>"The number of PML nuclear bodies increases in early S phase by a fission mechanism." Author(s): Dellaire G, Ching RW, Dehghani H, Ren Y, Bazett-Jones DP PubMed Article URL:http://dx.doi.org/10.1242/jcs.02816</td>
</tr>
</tbody>
</table>

Products are warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Production documentation, specifications and/or accompanying package inserts ("Documentation"). No claim of suitability for use in applications regulated by FDA is made. The warranty herein is void, and neither Thermo Fisher Scientific, Inc. nor its suppliers warrant the operation or performance of the Product under conditions other than those for which the Product is intended and for which the Product is warranted. The warranty is limited to one year from date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than the Buyer. Any model or sample furnished to Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.
Human / Not Cited

Journal of cell science (Nov 2003; 116: 4455)
"Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly."
Author(s): Eskiw CH, Dellaire G, Myrmiky JS, Bazett-Jones DP
PubMed Article URL: http://dx.doi.org/10.1242/jcs.00758

Rat / Not Cited

The Journal of cell biology (Dec 1996; 135: 1457)
"A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein Ran-GAP1 between the cytosol and the nuclear pore complex."
Author(s): Matunis MJ, Coutavas E, Blobel G
PubMed Article URL: http://dx.doi.org/10.1083/jcb.135.6.1457

Non-human primate / Not Cited

Hamster / Not Cited

33-2400 was used in immunocytochemistry to study the promotion of recombination-dependent pachytenic arrest in mouse spermatocytes due to the ATM signaling cascade

Mouse / Not Cited

Experimental cell research (Aug 2003; 288: 84)
"BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBBC/tripartite motif protein, TRIM5delta."
PubMed Article URL: http://dx.doi.org/10.1016/s0014-4827(03)00187-3

Human / Not Cited

Molecular and cellular biology (Dec 2005; 25: 10365)
"Sumoylation of p45/NF-E2: nuclear positioning and transcriptional activation of the mammalian beta-like globin gene locus."
Author(s): Shyu YC, Lee TL, Ting CY, Wen SC, Hsieh LJ, Li YC, Hwang JL, Lin CC, Shen CK

Mouse / Cited

33-2400 was used in immunocytochemistry to develop an array-based multiplexed analysis of signaling pathways

Not Applicable / 1:100

PLoS genetics (Mar 2015; 11:)
"The ATM signaling cascade promotes recombination-dependent pachytenic arrest in mouse spermatocytes."
Author(s): Pacheco S, Marcet-Ortega M, Lange J, Jasins M, Keeley S, Roig I
PubMed Article URL: http://dx.doi.org/10.1371/journal.pgen.1005017

Rat / 1:100

Chromosoma (Jun 2012; 121: 307)
"Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis?"
PubMed Article URL: http://dx.doi.org/10.1007/s00412-012-0364-y

33-2400 was used in immunocytochemistry to develop an array-based multiplexed analysis of signaling pathways

Not Applicable / Not Cited

Molecular & cellular proteomics: MCP (May 2007; 6: 939)
"Immunocell-array for molecular dissection of multiple signaling pathways in mammalian cells."
Author(s): Zanardi A, Giorgetti L, Botrugno OA, Minucci S, Milani P, Pelicci PG, Carbone R
PubMed Article URL: http://dx.doi.org/10.1014/mcp.T600051-MCP200

33-2400 was used in immunocytochemistry to examine SUMOylation enzymes in Cajal bodies

Products are warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Product documentation, specifications and/or accompanying package inserts (“Documentation”). Any claim of suitability for use in applications regulated by FDA is made. The warranty, provided herein is valid only when used by properly trained individuals. Unless otherwise stated in the Documentation, 33-2400 was used in Immunocytochemistry-immunofluorescence to identify a specific NF-E2 subunit sumoylation event in human erythroid cells that enhances the transactivation capability of mammalian beta-like globin.

Non-human primate / Not Cited

Hamster / Not Cited

33-2400 was used in immunocytochemistry to determine the subcellular localization of BTBD and BTBD2.
Non-human primate / Not Cited

Neurobiology of disease (Dec 2005; 20: 656)
"Transcriptional repression and cell death induced by nuclear aggregates of non-polyglutamine protein."
Author(s): Fu L,Gao YS,Sztul E
PubMed Article URL:http://dx.doi.org/10.1016/j.nbd.2005.05.015

Mouse / 1:200

Cell death & disease (Mar 2017; 8:)
"Myogenic differentiation triggers PML nuclear body loss and DAXX relocalization to chromocentres."
Author(s): Salesman J,Rapkin LM,Margam NN,Duncan R,Bazett-Jones DP,Dellaire G
PubMed Article URL:http://dx.doi.org/10.1038/cdcsd.2017.151

Hamster / Not Cited

Molecular and cellular biology (Apr 2007; 27: 2661)
"An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXE motif in the tumor suppressor HIC1 regulates transcriptional repression activity."
PubMed Article URL:http://dx.doi.org/10.1128/MCB.01088-06

Human / Not Cited

The Journal of biological chemistry (Jun 2001; 276: 23974)
"A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix."
Author(s): Tse WT,Tang J,Jin O,Korsgren C,John KM,Kung AL,Gwynn B,Peters LL,Lux SE
PubMed Article URL:http://dx.doi.org/10.1074/jbc.M009307200

Mouse / Not Cited

Biology open (Oct 2019; 8:)
"Perturbation of maternal PIASy abundance disrupts zygotic genome activation and embryonic development via SUMOylation pathway."
Author(s): Hiiguchi C,Yamamoto M,Shin SW,Miyamoto K,Matsunoto K
PubMed Article URL:http://dx.doi.org/10.1242/bio.048652

7 Immunohistochemistry References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species / Dilution</td>
<td>Summary</td>
</tr>
</tbody>
</table>
|**Mouse / Not Cited** | 33-2400 was used in Immunohistochemistry to identify and support a novel reproductive tissue-specific role for Akap9 in the coordinated regulation of Sertoli cells in the tests.

Mouse / Not Cited | Genetics (Jun 2013; 194: 447)
"AKAP9 is essential for spermatogenesis and sertoli cell maturation in mice."
Author(s): Schimenti KJ,Feuer SK,Griffin LB,Graham NR,Bovet CA,Hartford S,Pendola J,Lessard C,Chimenti JC,Ward JO
PubMed Article URL:http://dx.doi.org/10.1534/genetics.113.150789

Human / 1:500 | Neupathology : official journal of the Japanese Society of Neuropathology (Apr 2014; 34: 140)
"Ubiquitin-negative, eosiophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases."
Author(s): Mori F,Watanabe Y,Miki Y,Tanji K,Odagiri S,Eto K,Wakabayashi K
PubMed Article URL:http://dx.doi.org/10.1111/neup.12075

Mouse / Not Cited | Molecular and cellular biology (Jun 2005; 25: 5171)
"Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development."
Author(s): Yamaguchi T,Sharma P,Athanasioi M,Kumar A,Yamada S,Kuehn MR

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human / 1:800</td>
<td>Thermofisher.com/contactus 33-2400 was used in immunohistochemistry to investigate the association of giant cell polymyositis and myocarditis with myasthenia gravis and thymoma</td>
</tr>
</tbody>
</table>

Author(s): Kon T, Mori F, Tanji K, Miki Y, Kimura T, Wakabayashi K
PubMed Article URL: http://dx.doi.org/10.1111/j.1440-1789.2012.01345.x

| Human / 1:100 | "SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleus upon DNA damage."
Author(s): Brun S, Abella N, Berciano MT, Tapia O, Jaumot M, Freire R, Lafarga M, Agell N
PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0178925

| Human / 1:100 | 33-2400 was used in immunohistochemistry-immunofluorescence to show that p21, SUMO, and protein SUMOylation are important for intranuclear bodies assembly after DNA damage.

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| Human / 1:100 | PloS one (Sep 2017; 12:)
"SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleus upon DNA damage."
Author(s): Brun S, Abella N, Berciano MT, Tapia O, Jaumot M, Freire R, Lafarga M, Agell N
PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0178925

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| Human / 1:100 | Neuropathology : official journal of the Japanese Society of Neuropathology (Jun 2013; 33: 281)
"Giant cell polymyositis and myocarditis associated with myasthenia gravis and thymoma."
Author(s): Kon T, Mori F, Tanji K, Miki Y, Kimura T, Wakabayashi K
PubMed Article URL: http://dx.doi.org/10.1111/j.1440-1789.2012.01345.x

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| Human / 1:100 | Endocrinology (Aug 2012; 153: 3929)
"PROGESTERONE REGULATES PROGESTERONE RECEPTOR MEMBRANE COMPONENT 1 (PGRMC1) SUMOylation and transcriptional activity in spontaneously immortalized granulosa cells."
Author(s): Peluso JJ, Lodde V, Liu X
PubMed Article URL: http://dx.doi.org/10.1210/en.2011-2096

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| Human / 1:100 | Neuropathology : official journal of the Japanese Society of Neuropathology (Oct 2016; 36: 441)
"Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans."
Author(s): Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K
PubMed Article URL: http://dx.doi.org/10.1111/neup.12292

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| Human / 1:500 | Methods in molecular biology (Clifton, N.J.) (Dec 2015; 1295: 455)
"Identification of SUMO E3 ligase-specific substrates using the HuProt human proteome microarray."
Author(s): Cox E, Uzoma I, Guzzo C, Jeong JS, Matunis M, Blackshaw S, Zhu H
PubMed Article URL: http://dx.doi.org/10.1007/978-1-4939-2550-6_32

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
</table>
| Human / Not Cited | Biochimica et biophysica acta (May 2011; 1813: 1050)
"SUMOylation regulates nuclear localization of repressor DREAM."
Author(s): Palczewska M, Casafont I, Ghimire K, Rojas AM, Valencia A, Lafarga M, Mellström B, Naranjo JR
PubMed Article URL: http://dx.doi.org/10.1016/j.bbapap.2010.11.001

Products are warranted to operate or perform substantially in conformance with published Product specifications if used at the rates of speed or pressure stated in the Documentation. The warranty is limited to one (1) year from date of shipment when the Product is subjected to normal, proper, and intended usage. This warranty does not extend to anyone other than the Buyer. Any model or sample furnished to Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.

NO OTHER WARRANTIES, EXPRESS OR IMPLIED, ARE GRANTED INCLUDING WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-INFRINGEMENT. BUYER'S EXCLUSIVE REMEDY FOR NON-CONFORMING PRODUCTS DURING THE WARRANTY PERIOD IS LIMITED TO REPAIR, REPLACEMENT OF OR REFUND FOR THE NON-CONFORMING PRODUCT AT SELLER'S SOLE OPTION. THERE IS NO WARRANTY OF FITNESS FOR SPECIFIC OR ANY OTHER USE.

1 Immunohistochemistry (Paraffin) References

1 ELISA References

17 Miscellaneous PubMed References
33-2400 was used in immunohistochemistry - paraffin section to report and characterize an incipient case of intranuclear inclusion body disease.

Neuropathology: official journal of the Japanese Society of Neuropathology (Apr 2011; 31: 188)

"Incipient intranuclear inclusion body disease in a 78-year-old woman."

Author(s): Mori F, Miki Y, Tanji K, Ogura E, Yagihashi N, Jensen PH, Wakabayashi K

PubMed Article URL: http://dx.doi.org/10.1111/j.1440-1789.2010.01150.x

33-2400 was used in immunocytchemistry and western blot to report quantitative and qualitative differences between SUMO-1 and SUMO-2/3 in vertebrate cells.

Non-human primate / Not Cited

The Journal of biological chemistry (Mar 2000; 275: 6252)

"Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3."

Author(s): Saitoh H, Hincheny J

PubMed Article URL: http://dx.doi.org/10.1074/jbc.275.9.6252

33-2400 was used in immunocytochemistry to identify a nucleolar-associated RNA-protein aggregate formed by proteasome activity inhibition in mammalian cells.

Human / Not Cited

Oncogene (Feb 2011; 30: 790)

"Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability."

Author(s): Latonen L, Moore HM, Bai B, Jäämaa S, Laiho M

PubMed Article URL: http://dx.doi.org/10.1038/onc.2010.469

33-2400 was used in western blot to generate a protein microarray-based assay to measure post-translational modifications.

Human / Not Cited

PloS one (Jun 2010; 5:)

"Development and validation of a method for profiling post-translational modification activities using protein microarrays."

Author(s): Del Rincón SV, Rogers J, Widschwendter M, Sun D, Sieburg HB, Spruck C

PubMed Article URL: http://dx.doi.org/10.1371/journal.pone.0011332

33-2400 was used in immunohistochemistry (paraffin) to measure the extent and frequency of URP-immunoreactive inclusions in intranuclear inclusion body disease.

Human / 1:800

Pathology international (Jun 2012; 62: 407)

"Ubiquitin-related proteins in neuronal and glial intranuclear inclusions in intranuclear inclusion body disease."

PubMed Article URL: http://dx.doi.org/10.1111/j.1440-1827.2012.02812.x

33-2400 was used in western blot to report PINK1 phosphorylates ubiquitin which results in parkin activation.

Human / 1:500

Nature (Jun 2014; 510: 162)

"Ubiquitin is phosphorylated by PINK1 to activate parkin."

PubMed Article URL: http://dx.doi.org/10.1038/nature13392

33-2400 was used in western blot to investigate how KLF4 and SUMO co-regulate gene expression.

Human / Not Cited

The Journal of biological chemistry (Sep 2010; 285: 28298)

"A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4."

Author(s): Du X, McConnell BB, Yang VW

PubMed Article URL: http://dx.doi.org/10.1074/jbc.M110.101717

33-2400 was used in western blot to study apoptosis induced by As2O3.

Human / Not Cited

Molecular and cellular biology (Jul 1999; 19: 5170)

"PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia."

Author(s): Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann OG, Ruthardt M

PubMed Article URL: http://dx.doi.org/10.1128/MCB.19.7.5170

Products are warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Production documentation, specifications and/or accompanying package inserts (“Documentation”). No claim of suitability for use in applications regulated by FDA is made. The warranty is limited to repair, replacement of or refund for the non-conforming Product(s) at Seller’s sole option. There is no warranty for products, parts, or components beyond that period of the warranty. Buyer’s exclusive remedy for non-conforming Products during the warranty period is the repair, replacement of or refund for the non-conforming Product(s) at Seller’s sole option under the terms of the warranty.

NO OTHER WARRANTIES, EXPRESS OR IMPLIED, ARE GRANTED, INCLUDING WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-INFRINGEMENT. BUYER'S EXCLUSIVE REMEDY FOR NON-COMFORMING PRODUCTS DURING THE WARRANTY PERIOD IS LIMITED TO REPAIR, REPLACE OR REFUND FOR THE NON-COMPROMISING PRODUCT(S) AT SELLER'S SOLE OPTION. THERE IS NO OBLIGATION TO REPAIR, REPLACE OR REFUND FOR PRODUCTS AS THE RESULT OF A ACCIDENT, DEFECT ON EVENT OF FORCE MAJEURE, IN MESS, FAULT OR NEGLIGENCE OF OR BY BUYER, (III) USE OF THE PRODUCTS IN A MANNER FOR WHICH THEY WERE NOT DESIGNED, OR (IV) IMPROPER INSTALLATION, TESTING, OR MAINTENANCE OR HANDLING OF THE PRODUCTS. Unless otherwise expressly stated on the Product or in the documentation accompanying the Product, the Product is intended for research only and is not to be used for any other purpose, including without limitation, unauthorized commercial uses, in vitro diagnostic uses, as or in vivo therapeutic uses, or any type of consumption by or application to human or animals.

thermofisher.com/contactus
33-2400 was used in immunohistochemistry (frozen) to test if autophagic vacuoles formation is required for A production by SUMO1.

Mouse / 1:100

Autophagy (Nov 2015; 11: 100)
"SUMO1 promotes A production via the modulation of autophagy."
Author(s): Cho SJ, Yun SM, Jo C, Lee DH, Choi KJ, Song JC, Park SJ, Kim YJ, Koh YH
PubMed Article URL: http://dx.doi.org/10.4161/15548627.2014.984283

33-2400 was used in immunoprecipitation and western blot to identify proteins that interact with bovine papillomavirus E1.

Human / 5 µg

The Journal of biological chemistry (Sep 2000; 275: 30487)
"Bovine papillomavirus E1 protein is sumoylated by the host cell Ubc9 protein."
Author(s): Rangasamy D, Wilson VG
PubMed Article URL: http://dx.doi.org/10.1074/jbc.M003889200

33-2400 was used in western blot to study SUMO-1-modified IkappaBalha.

Human / Not Cited

Molecular cell (Aug 1998; 2: 233)
"SUMO-1 modification of IkappaBalha inhibits NF-kappaB activation."
Author(s): Desterro JM, Rodriguez MS, Hay RT
PubMed Article URL: http://dx.doi.org/10.1016/s1097-2765(00)80133-1

33-2400 was used in immunocytochemistry to report that the effects of progerin are partially transduced by reduced function of Ran GTPase and SUMOylation pathways.

Human / Not Cited

Journal of virology (Mar 2000; 74: 2510)
"Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b."
Author(s): Hofmann H, Floss S, Stamminger T
PubMed Article URL: http://dx.doi.org/10.1128/JVI.74.6.2510-2524.2000

33-2400 was used in western blot to examine the cross-talk between glucocorticoid-induced leucine zipper and caspase-8 in dexamethasone-treated thymocytes.

Mouse / Not Cited

Cell death and differentiation (Jan 2011; 18: 183)
"Glucocorticoid-induced activation of caspase-8 protects the glucocorticoid-induced protein Gilz from proteasomal degradation and induces its binding to SUMO-1 in murine thymocytes."
Author(s): Delfino DV, Spinicelli S, Pozzesi N, Pierangelo S, Velardi E, Bruscoli S, Martelli MP, Petrirosso V, Falchi L, Kang TB, Riccardi C
PubMed Article URL: http://dx.doi.org/10.1038/cdd.2010.86

33-2400 was used in western blot to examine the role of pescadilloin glial tumorigenesis.

Human / 1:1000

The Journal of biological chemistry (Mar 2001; 276: 6656)
"Pescadillo, a novel cell cycle regulatory protein abnormally expressed in malignant cells."
PubMed Article URL: http://dx.doi.org/10.1074/jbc.M008536200

33-2400 was used in western blot to study sumoylation of the E1 protein.

Human / Not Cited

The Journal of biological chemistry (Dec 2000; 275: 37999)
"SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation."
Author(s): Rangasamy D, Woytek K, Khan SA, Wilson VG
PubMed Article URL: http://dx.doi.org/10.1074/jbc.M007777200

1 Gel Shift References

<table>
<thead>
<tr>
<th>Species / Dilution</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human / 1:1000</td>
<td>The Journal of biological chemistry (Dec 2000; 275: 37999)</td>
</tr>
<tr>
<td></td>
<td>"SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation."</td>
</tr>
<tr>
<td></td>
<td>Author(s): Rangasamy D, Woytek K, Khan SA, Wilson VG</td>
</tr>
<tr>
<td></td>
<td>PubMed Article URL: http://dx.doi.org/10.1074/jbc.M007777200</td>
</tr>
</tbody>
</table>

NO OTHER WARRANTIES, EXPRESS OR IMPLIED, ARE GRANTED INCLUDING WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON INFRINGEMENT. BUYER'S EXCLUSIVE REMEDY FOR NON-CONFORMING PRODUCTS DURING THE WARRANTY PERIOD IS LIMITED TO REPAIR, REPLACEMENT OR REFUND FOR PRODUCTS AS THE RESULT OF (I) ACCIDENT, DISASTER OR EVENT OF FORCE MAJEURE, (II) MISUSE, FAULT OR NEGLIGENCE OF OR BY BUYER, (III) USE OF THE PRODUCTS IN A MANNER FOR WHICH THEY WERE NOT DESIGNED, OR (IV) IMPROPER STORAGE AND HANDLING OF THE PRODUCTS. UNLESS OTHERWISE EXPRESSLY STATED ON THE PRODUCT OR IN THE DOCUMENTATION ACCOMPANYING THE PRODUCT, THE PRODUCT IS INTENDED FOR RESEARCH ONLY AND IS NOT TO BE USED FOR ANY OTHER PURPOSE, INCLUDING WITHOUT LIMITATION, UNAUTHORIZED COMMERCIAL USES, IN-VITRO DIAGNOSTIC USES, AS A PART OF ANY THERAPEUTIC USES, OR ANY TYPE OF CONSUMPTION OR APPLICATION TO HUMANS OR ANIMALS.

Thermo Fisher Scientific
3747 N. Meridian Road
Rockford, IL 61105 USA

thermofisher.com/contactus
Molecular endocrinology (Baltimore, Md.) (Oct 2004; 18: 2451)
"Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9."

Author(s): Komatsu T, Mizusaki H, Mukai T, Ogawa H, Baba D, Shirakawa M, Hatakeyama S, Nakayama KI, Yamamoto H, Kikuchi A, Morohashi K

PubMed Article URL: http://dx.doi.org/10.1210/me.2004-0173