Shop All Other Enzyme Assay Kits

NA-XTD™ Influenza Neuraminidase Assay Reagent Set, no plates included (Invitrogen™)

The NA-XTD™ Influenza Neuraminidase Assay Kit is a next-generation chemiluminescence-based assay that provides a longer signal read-out compared to the first-generation NA-Star® Influenza Neuraminidase Inhibitor Resistance Detection Kit. The NA-XTD™ kit includes detection reagents and microplates, eliminating the need for luminometers equipped with a reagent injector, and improving ease-of-use. This kit also includes complete assay protocols for quantitating sensitivity to neuraminidase inhibitors in various influenza virus isolates including: human influenza types A and B, A⁄H1N1 pandemic, avian, equine and porcine viruses.

Key product features:
• Superior performance—improved, long-lived light emission kinetics and read-time flexibility
• High sensitivity—high assay signal-to-noise, detection of low-virus concentrations, and wide assay dynamic range
• Simple instrumentation requirement—no reagent injectors or luminometer needed
• Multiple applications—neuraminidase inhibitor IC50 assays and cell-based virus quantitation

Long-Lived Light Emission Kinetics & Read-Time Flexibility
The NA-XTD™ assay yields much longer-lived light emission kinetics than does the NA-Star® assay, eliminating the need for luminometer instrumentation with reagent injectors and enabling read-time flexibility and batch-mode processing of assay plates. NA-XTD™ assay signal half-life is approximately 2 hours, longer than the 5-10 minute half-life of the NA-Star® assay signal. IC-50 values determined from data collected immediately or up to 3 hours following addition of NA-XTD™ Accelerator solution are identical (Figure 1).

High Sensitivity
The NA-XTD™ chemiluminescent assay provides higher detection sensitivity (better low-end detection limit), higher assay signal-to-noise ratio, and wider assay dynamic range than fluorescent assays with the MUNANA substrate. The NA-XTD™ assay also typically demonstrates slightly higher signal-to-noise than the NA-Star® assay. The NA-XTD™ assay provides 2–50-fold higher sensitivity by signal-to-noise ratio than MUNANA-based fluorescence assays, depending on the virus isolate (Figure 2). The NA-XTD™ assay provides a dynamic range of detection of 3–4 orders of magnitude of neuraminidase enzyme concentration, compared to 2–3 orders of magnitude range with fluorescent MUNANA assays. The wide chemiluminescent neuraminidase assay range enables determination of IC-50 values over a wide range of virus concentrations, eliminating the need to titer virus prior to performing IC50 determination assays (Figure 3).

Simple Instrumentation Requirement
The NA-XTD ™ assay can be used for virus quantitation in media samples from 96-well microplates or other virus cultures for monitoring viral growth or infection, or for performing viral inhibition assays in a cell-based system. Optimally, a small sample of culture media is removed and assayed directly with NA-XTD™ reagents, permitting multiple samples to be assayed over time (Figure 4).

Multiple Applications in One Complete Kit
The NA-XTD™ Assay Buffer is used as diluent for virus samples, neuraminidase inhibitors and NA-XTD™ substrate. An optional NA Sample Prep Buffer is also included for Triton® X-100 detergent addition to virus preparations, which increases NA activity in some virus preparations. The next-generation NA-XTD™ Accelerator solution triggers high intensity light emission from the NA-XTD™ reaction product. For added convenience and assay performance, the kit includes NA-Star™ Detection Microplates. These 96-well solid white assay microplates were selected for optimum assay performance, including high signal intensity, low background, and minimum well-to-well cross-talk. The kit includes a comprehensive assay protocol that provides virus and neuraminidase inhibitor (NI) dilution recommendations, a recommended plate layout for NI sensitivity assays, a protocol for virus quantitation, and a literature reference list. The NA-XTD™ Influenza Neuraminidase Assay Kit is compatible with a wide range of luminometers, including single-mode and multi-mode instruments, with no need for injectors.

For Research Use Only. Not for use in diagnostics procedures.

Glutathione S-Transferase Fluorescent Activity Kit (Invitrogen™)

The Glutathione S-Transferase Activity research-use-only kit is a fluorescent activity assay designed for the quantification and detection of glutathione S-transferase activity in serum, plasma, urine and cell lysates.

This complete, ready-to-use kit includes black 96-well plate(s), glutathione S-transferase standard (10 U/mL), glutathione S-transferase substrate, and other components to perform the assay. A 96-well microplate reader capable of reading the fluorescent emission at 460 nm, with excitation at 370-410 nm, is required for use of this kit.

Performance characteristics
• Assay type: fluorescent activity kit
• Sample types: serum, plasma, urine, and cell lysates
• Sensitivity: 2.70 mU/mL
• Standard curve range: 7.8 mU/mL–500 mU/mL
• Reactivity: species independent

Background
The Glutathione S-Transferase (GST) family of isozymes function to detoxify and neutralize a wide variety of electrophilic molecules by mediating their conjugation with reduced glutathione1. Human GSTs are encoded by 5 gene families, expressed in almost all tissues as four cytosolic and one microsomal forms. Dividing the family by isoelectric points, the basic alpha (pI 8–11), the neutral mu (pI 5–7), and acidic pi (pH<5) classes are populated by additional subclasses, each isozyme displaying differential specificity for given electrophilic molecules. This assay has been validated for human urine, serum, EDTA, heparin plasma, toadfish liver (Opsanus tau), and oyster hemolymph samples. Most cell lysates should also be compatible. GST activity varies across tissues and species, so this kit should measure GST activity from sources other than human.

Assay principle
The Glutathione S-Transferase Fluorescent Activity kit is designed to quantitatively measure the activity of GST present in a variety of samples. A GST standard is provided to generate a standard curve for the assay and all samples should be read off the standard curve. The kit utilizes a non-fluorescent molecule that is a substrate for the GST enzyme that covalently attaches to glutathione (GSH) to yield a highly fluorescent product. Mixing the sample or standard with the supplied detection reagent and GSH and incubating at room temperature for 30 minutes yields a fluorescent product which is read at 460 nm in a fluorescent plate reader with excitation at 390 nm.

Related links
Learn more about ELISA kits
Learn more about other immunoassays

EnzChek™ Lysozyme Assay Kit (Invitrogen™)

The EnzChek® Lysozyme Assay Kit provides researchers with a simple and sensitive assay to measure lysozyme activity in solution. The increase in fluorescence resulting from lysozyme activity is measured using a fluorometer or fluorescence microplate reader.

See our complete line of Fluorescence Microplate assays.

• Detect lysozyme activity concentrations as low as 20 U/mL
• Use standard fluorescein (FITC) excitation/emission settings
• Format allows for continuous measurement of lysozyme activity

The assay utilizes an innovative approach to measure lysozyme activity. Micrococcus lysodeikticus cell walls are used that have been extensively labeled with fluorescein causing quench of the fluorescence signal. Active lysozyme enzyme hydrolyzes the b-(1-4)-glucosidic linkages between the N-acetylmuramic acid and N-acetyl-D-glucosamine residues in the mucopolysaccharide cell wall, relieving the quenching and yielding a dramatic increase in fluorescence that is proportional to lysozyme activity.

NA-XTD™ Influenza Neuraminidase Assay Kit (Invitrogen™)

The NA-XTD™ Influenza Neuraminidase Assay Kit is a next-generation chemiluminescence-based assay that provides a longer signal read-out compared to the first-generation NA-Star® Influenza Neuraminidase Inhibitor Resistance Detection Kit. The NA-XTD™ kit includes detection reagents and microplates, eliminating the need for luminometers equipped with a reagent injector, and improving ease-of-use. This kit also includes complete assay protocols for quantitating sensitivity to neuraminidase inhibitors in various influenza virus isolates including: human influenza types A and B, A⁄H1N1 pandemic, avian, equine and porcine viruses.

Key product features:
• Superior performance—improved, long-lived light emission kinetics and read-time flexibility
• High sensitivity—high assay signal-to-noise, detection of low-virus concentrations, and wide assay dynamic range
• Simple instrumentation requirement—no reagent injectors or luminometer needed
• Multiple applications—neuraminidase inhibitor IC50 assays and cell-based virus quantitation

Long-Lived Light Emission Kinetics & Read-Time Flexibility
The NA-XTD™ assay yields much longer-lived light emission kinetics than does the NA-Star® assay, eliminating the need for luminometer instrumentation with reagent injectors and enabling read-time flexibility and batch-mode processing of assay plates. NA-XTD™ assay signal half-life is approximately 2 hours, longer than the 5-10 minute half-life of the NA-Star® assay signal. IC-50 values determined from data collected immediately or up to 3 hours following addition of NA-XTD™ Accelerator solution are identical (Figure 1).

High Sensitivity
The NA-XTD™ chemiluminescent assay provides higher detection sensitivity (better low-end detection limit), higher assay signal-to-noise ratio, and wider assay dynamic range than fluorescent assays with the MUNANA substrate. The NA-XTD™ assay also typically demonstrates slightly higher signal-to-noise than the NA-Star® assay. The NA-XTD™ assay provides 2–50-fold higher sensitivity by signal-to-noise ratio than MUNANA-based fluorescence assays, depending on the virus isolate (Figure 2). The NA-XTD™ assay provides a dynamic range of detection of 3–4 orders of magnitude of neuraminidase enzyme concentration, compared to 2–3 orders of magnitude range with fluorescent MUNANA assays. The wide chemiluminescent neuraminidase assay range enables determination of IC-50 values over a wide range of virus concentrations, eliminating the need to titer virus prior to performing IC50 determination assays (Figure 3).

Simple Instrumentation Requirement
The NA-XTD ™ assay can be used for virus quantitation in media samples from 96-well microplates or other virus cultures for monitoring viral growth or infection, or for performing viral inhibition assays in a cell-based system. Optimally, a small sample of culture media is removed and assayed directly with NA-XTD™ reagents, permitting multiple samples to be assayed over time (Figure 4).

Multiple Applications in One Complete Kit
The NA-XTD™ Assay Buffer is used as diluent for virus samples, neuraminidase inhibitors and NA-XTD™ substrate. An optional NA Sample Prep Buffer is also included for Triton® X-100 detergent addition to virus preparations, which increases NA activity in some virus preparations. The next-generation NA-XTD™ Accelerator solution triggers high intensity light emission from the NA-XTD™ reaction product. For added convenience and assay performance, the kit includes NA-Star™ Detection Microplates. These 96-well solid white assay microplates were selected for optimum assay performance, including high signal intensity, low background, and minimum well-to-well cross-talk. The kit includes a comprehensive assay protocol that provides virus and neuraminidase inhibitor (NI) dilution recommendations, a recommended plate layout for NI sensitivity assays, a protocol for virus quantitation, and a literature reference list. The NA-XTD™ Influenza Neuraminidase Assay Kit is compatible with a wide range of luminometers, including single-mode and multi-mode instruments, with no need for injectors.

For Research Use Only. Not for use in diagnostics procedures.

LanthaScreen™ TR-FRET BACE1 Assay Kit

BACE1 (beta-secretase) is a key enzyme involved in the production of amyloid beta-peptides found in extracellular amyloid plaques of Alzheimer’s disease (AD). In some cases, early-onset familial AD can be attributed to a "Swedish"mutation in the amyloid precursor protein (APP), which dramatically enhances the cleavage of this protein by BACE1. This and other genetic and pathological evidence has led to therapeutic approaches that focus on the inhibition of BACE1 and other APP-cleaving enzymes, such as gamma-secretase.

Invitrogen’s LanthaScreen® TR-FRET BACE1 assay provides sensitive high-throughput screening for potential inhibitors of beta-secretase. The kit uses a terbium (Tb)-labeled anti-biotin antibody and a fluorescein-labeled BACE1-biotin substrate in a homogeneous TR-FRET assay format (Figure 1).



Contents and Storage:

The LanthaScreen® TR-FRET BACE1 Assay Kit contains BACE1 protein, fluorescently labeled BACE1 substrate, Tb-labeled anti-biotin antibody, and buffers. Store components as indicated in the assay protocol (-80°C, -20°C, or +4°C).

Amplex™ Acetylcholine/Acetlycholinesterase Assay Kit (Invitrogen™)

The Amplex® Red Acetylcholine/Acetylcholinesterase Assay Kit provides an ultrasensitive method for detecting acetylcholinesterase (AChE) activity in a fluorescence microplate reader or fluorometer.

See our complete line of Fluorescence Microplate assays.

• Detect AChE activity levels as low as 0.002 U/mL in one hour
• Detect acetylcholine levels as low as 0.3 µM using excess AChE
• Achieve detection ranges of 0.3 µM to 100 µM acetylcholine
• Format allows for multiple time point measurements
• Designed for minimal autofluorescence interference

AChE activity is monitored indirectly using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red reagent), a sensitive fluorogenic probe for hydrogen peroxide. AChE converts the acetylcholine substrate to choline, which is then oxidized by choline oxidase to betaine and hydrogen peroxide. In the presence of horseradish peroxidase, hydrogen peroxide reacts with the Amplex® Red reagent in a 1:1 stoichiometric ratio to generate the highly fluorescent product resorufin.

Because resorufin has absorption and fluorescence emission maxima of approximately 571 nm and 585 nm, respectively, there is little interference from autofluorescence in most biological samples. Experiments with purified AChE from electric eel indicate that the Amplex® Red Acetylcholine/Acetylcholinesterase Assay Kit can detect AChE levels as low as 0.002 U/mL using a reaction time of one hour. By providing an excess of AChE in the assay, the kit can also be used to detect acetylcholine levels as low as 0.3 µM, with a range of detection from 0.3 µM to 100 µM acetylcholine.

Use Amplex® Red Assays for a Broad Range of Investigations
A wide variety of validated Amplex® Red assays are available for studying cell signaling and lipids, neurobiology, inflammation and immune function, and metabolism. We also offer Amplex® UltraRed Reagent (Cat. No. A36006), a second-generation reagent providing greater sensitivity and brighter fluorescence, and the Amplex® Red/UltraRed Stop Reagent (Cat. No. A33855). The Amplex® Red/UltraRed Stop Reagent provides convenience and control by allowing the fluorescence signal-generating reaction to be terminated at a user-determined time point. After addition of the stop reagent, the fluorescence signal remains stable for at least three hours. Custom assay design and packaging are also available.

EnzChek™ Ultra Amylase Assay Kit (Invitrogen™)

The EnzChek® Ultra Amylase Assay Kit provides a solution-based assay featuring the speed, high sensitivity, and convenience required for measuring amylase activity or for screening amylase inhibitors in a high-throughput format. This EnzChek® kit contains a starch derivative—the DQ™ starch substrate—that is labeled with BODIPY® FL dye to such a degree that the fluorescence is quenched. This substrate is efficiently degraded by amylase; digestion relieves the quenching and yields highly fluorescent fragments. The accompanying increase in fluorescence is proportional to amylase activity and can be monitored with a fluorescence microplate reader or fluorometer, using standard fluorescein filters.

EnzChek® Ultra Amylase Assay Kit Specifications:
• Label (Ex/Em): BODIPY® FL conjugate (~502/512 nm)
• Kit contains lyophilized substrate, 10X reaction buffer, substrate solvent, a fluorescent standard, and a detailed protocol
• Sufficient reagents are supplied for 500 assays (using a 100 µL assay volume in a 96-well microplate assay format)


Find Fluorescent Substrates for Other Glycosidases
In addition to the EnzChek® Ultra Amylase Assay Kit, we offer kits and substrates to measure xylanase, lysozyme, β-galactosidase, and more. Review Detecting Glycosidases—Section 10.2 in the Molecular Probes® Handbook for more information on these products.

For Research Use Only. Not for human or animal therapeutic or diagnostic use.

EnzChek™ Elastase Assay Kit (Invitrogen™)

The EnzChek Elastase Assay Kit provides a sensitive, convenient and fast fluorometric method for measuring elastase or other protease activity in purified enzyme systems, cell/tissue lysates or for screening inhibitors in a high-throughput format. The substrate in the EnzChek kit is our BODIPY-FL-labeled DQ elastin conjugate that is highly labeled so that the fluorescence signal is quenched until enzymatic digestion yields highly fluorescent fragments.

ActivX Desthiobiotin-GTP Probe (Thermo Scientific™)

Thermo Scientific Pierce ActivX Desthiobiotin-GTP Probe covalently label the active site of GTPases and GTPase subunits of G-protein coupled receptors enabling their selective enrichment thereby allowing identification and profiling of target enzyme classes across samples or to assess the specificity and affinity of enzyme inhibitors.

Features of ActivX Desthiobiotin-GTP Probe:

Specific—label only the conserved active-site lysines of nucleotide-binding proteins
Compatible—use for in vitro labeling of GTPase enzymes derived from cells or tissues.
Flexible—use with Western blot or mass spectrometry (MS) workflows

Applications of ActivX Desthiobiotin-GTP Probe:
• Broad enrichment of GTP-binding proteins from tissues, cells and sub-cellular proteomes
• Enrichment of enzymes based on function
• Profiling of dozens to hundreds of inhibitor targets

ActivX Desthiobiotin-GTP Probe structure consists of a modified biotin attached to the nucleotide by a labile acyl-phosphate bond. After removal of GTP or GDP nucleotides from enzymes, the desthiobiotin-GTP probe can be used to covalently modify conserved lysine residues in the GTPase nucleotide-binding site. Desthiobiotin-GTP can selectively enrich, identify and profile target enzyme classes in samples. Pre-incubation of samples with small-molecule inhibitors that compete with active-site probes can be used to determine inhibitor binding affinity and target specificity.

Assessment of active-site labeling can be accomplished by either Western blot or mass spectrometry (MS). For the Western blot workflow, desthiobiotin-labeled proteins are enriched for SDS-PAGE analysis and subsequent detection with specific antibodies. For the MS workflow, desthiobiotin-labeled proteins are reduced, alkylated and enzymatically digested to peptides. Only the desthiobiotin-labeled, active-site peptides are enriched for analysis by LC-MS/MS. Both workflows can be used for determining inhibitor target binding, but only the MS workflow can identify global inhibitor targets and off-targets.

More Product Data
GTPase enrichment using a new active-site probe

Related Products
Pierce™ GTPase Enrichment Kit with GTP Probe

Histone Demethylase Fluorescent Activity Kit (Invitrogen™)

The Histone Demethylase Activity research-use-only kit is a fluorescent activity assay designed for the quantification and detection of histone demethylase activity of lysine-specific histone demethylase 1 (LSD1)-and Jumonji-type demethylases.

This kit includes black 96-well plate(s), LSD1/JMJD2A assay buffers, formaldehyde standard, and other components to perform the assay. This kit does not contain demethylase enzyme samples. A source of LSD1-type or Jumonji-type demethylase, along with any cofactors, enzyme substrates, inhibitors, and/or activators need to be supplied by the user. A fluorescence 96-well microplate reader capable of reading fluorescent emission at 510 nm, with excitation at 450 nm, is required for use of this kit.

Performance characteristics
• Assay type: fluorescent activity kit
• Sample types: lysine-specific histone demethylase 1 (LSD1) and Jumonji-type demethylases
• Standard curve range: 0.128 uM–0.64 uM for LSD1, 2.5 uM-10uM for JMJD2A
• Reactivity: human

Background
Histone Demethylase (HDM) catalyzes the site-specific demethylation of methyl-lysine residues in histones to dynamically regulate chromatin structure, gene expression, and potentially other genomic functions. Lysine-specific HDMs were first discovered in 2004 and are currently among the most actively studied formaldehyde-producing enzymes. At present, there are two known classes of HDMs: the flavin adenine dinucleotide (FAD)-dependent Lysine Specific Demethylase 1 (LSD1) family and the Fe(II)-dependent Jumonji C (JmjC) family. Although the LSD1 and JmjC HDMs employ different cofactors and catalytic mechanisms, both produce formaldehyde as a byproduct of the demethylation reaction.

Despite their biological importance, HDMs have proven difficult to quantitatively assay owing to their relatively low turnover numbers, hindering understanding of their kinetic properties, substrate specificities, and reaction mechanisms. This assay has been validated for lysine-specific histone demethylase 1 (LSD1)-and Jumonji-type demethylases. For HDM samples in cell lysates, we include a specially formulated Cell Lysis Buffer, that has been shown not to interfere with formaldehyde detection. Cell lysis buffers containing SDS and Triton X-100 inhibit the formaldehyde signal reaction and should not be used.

Assay principle
The Histone Demethylase Activity kit is to quantitatively measure the enzymatic activity of formaldehyde-producing enzymes such as histone demethylases. The kit is unique in that the product of these enzymatic demethylation reactions, formaldehyde, is quantitated directly by a fluorescent product. No separation or washing is required. The kit has been validated for both LSD1 and JMJD2A histone demethylases (HDMs).

The kit provides optimized buffers for the HDMs LSD1 and JMJD2A, a stable formaldehyde standard, the Formaldehyde Detection Reagent (FDR), and two 96-well plates for detecting the generated fluorescent signal. The kit allows any enzymatic reaction generating formaldehyde to be measured. The end user will have to provide the demethylase system and any cofactors necessary for activity, along with any test inhibitors or activators. The kit allows end users to produce HDM activity in many in vivo and in vitro systems and then determine the activity by measuring formaldehyde generation. For in vitro studies, the HDM reaction should be carried out in our supplied buffers using optimized reaction conditions for the demethylation.

Following the formaldehyde generating reaction, the reaction can be stopped by addition of a suitable inhibitor. The FDR is then added to all the wells. If calibration to formaldehyde is needed (for cross lab comparisons) then a formaldehyde standard curve generated from the supplied standard should be run. After a short incubation at 37°C for 30 minutes, the fluorescent product is read at 510 nm in a fluorescent plate reader with excitation at 450 nm.

Related links
Learn more about ELISA kits
Learn more about other immunoassays

EnzChek™ Myeloperoxidase (MPO) Activity Assay Kit (Invitrogen™)

Myeloperoxidase (MPO) is a unique peroxidase that, in addition to its peroxidation activity, also catalyzes the conversion of hydrogen peroxide (H2O2) and chloride (Cl-) to hypochlorous acid (HOCl). The EnzChek® Myeloperoxidase (MPO) Activity Assay Kit provides assays for the determination of both chlorination and peroxidation activities of MPO in solution and in cell lysates. For detection of chlorination, the kit includes nonfluorescent 3'-(p-aminophenyl) fluorescein (APF), which is selectively cleaved by hypochlorite (-OCl) to yield fluorescein. Peroxidation is detected using nonfluorescent Amplex® UltraRed reagent (A36006), which is oxidized by the H2O2-generated redox intermediates MPO-I and MPO-II to form a fluorescent product. The EnzChek® Myeloperoxidase Activity Assay Kit can be used to continuously detect these activities at room temperature over a broad dynamic range (1.5 to 200 ng/mL). The speed (30 minutes), sensitivity, and mix-and-read convenience make this kit ideal for measuring MPO activities and for high-throughput screening for MPO-specific inhibitors.

EnzChek™ Paraoxonase Assay Kit (Invitrogen™)

The EnzChek® Paraoxonase Assay Kit is a highly sensitive, homogenous fluorometric assay for the organophosphatase acitivty of paraoxonase. Based on the hydrolysis of a fluorogenic analog, this assay is >10-fold more sensitive than the colorimetric assay, and unlike the colorimetric assay, can distinguish samples of very similar paraoxonase activity. Under standard conditions, the assay requires only 5 µl of serum, yields a signal in as little as 15 minutes, and is linear for up to 50 minutes. The assay requires only a single reaction that can be either continuously monitored or terminated using the stop reagent included in the kit.

Amplex™ Red Catalase Assay Kit (Invitrogen™)

The Amplex Red Catalase Assay Kit provides a sensitive and simple fluorometric method for detecting as little as 50 mU/mL of catalase activity in a purified system in a 100µL assay volume.

ActivX™ Azido-FP Serine Hydrolase Probe (Thermo Scientific™)

Thermo Scientific Serine Hydrolase Probes are ActivX™ Fluorophosphonate (FP) and other tagged phosphonate probes to purify or assay serine hydrolase active sites using fluorescence, biotin-affinity, or mass spectrometry.

Features of ActivX Azido-FP Serine Hydrolase Probe:

Specific—labels the reactive site of active serine hydrolases
Compatible—tags available for capture, detection and Staudinger conjugation
Flexible—use for in vitro or intracellular enzyme labeling

These ActivX™ FP Probes feature a reactive fluorophosphonate group that specifically and covalently labels the active-site serine of enzymatically active serine hydrolases. These probes are available with a desthiobiotin (biotin analog) tag for selective enrichment, TAMRA fluorophore for detection or a reactive- azido group (Staudinger reagents) that facilitates multiplex labeling when used with phosphine- or alkyne-derivatized tags. These probes can be used to assess activity or screen small molecule inhibitors against enzymes derived from cell lysates, subcellular fractions, tissues and recombinant proteins.

Applications:
• Determine serine hydrolase enzyme activity in cells and lysates
• Mapping the active-site serine of functionally diverse serine hydrolase family members (e.g. proteases, lipases, esterases)
• Screen for small molecule binding affinities and active-site inhibition
• Profile serine hydrolases using fluorescent, Western blot or mass spectrometry workflows

ActivX active-site probes are especially advantageous for determining active enzyme levels compared to other protein expression profiling techniques that only measure abundance. Because many of the proteolytic enzymes in the serine hydrolase family are expressed as inactive proenzymes (zymogens), the ActivX FP probes selective enrichment only those enzymes that are functionally active and biologically relevant at the time of labeling. This feature also makes it possible to perform selective screening of inhibitors or other conditions that alter enzyme activity.

Active serine hydrolases labeled with ActivX FP Probes can be detected and quantified by Western blot, fluorescent gel imaging or mass spectrometry by using a compatible tag. The TAMRA-FP probe can be used to label and detect active serine hydrolases in samples by fluorescent gel imaging, capillary electrophoresis or mass spectrometry. An anti-TAMRA antibody is also available for immuno-enrichment of TAMRA-FP probe-labeled proteins. The Azido-FP probe is used in combination with a phosphine- or alkyne-derivatized tag for either detection or enrichment. Desthiobiotin-FP probes can be used for streptavidin-based enrichment and detection of active serine hydrolase proteins in Western blotting or mass spectrometry.

The serine hydrolase superfamily is one of the largest, most diverse enzyme families in eukaryotic proteomes. Serine hydrolases are generally grouped into two large families: serine proteases (e.g., trypsin, elastase and thrombin) and metabolic serine hydrolases. Metabolic serine hydrolases are divided into multiple enzyme subclasses (e.g., esterases, lipases, amidases and peptidases) based on structure, catalytic mechanism and substrate preference.

Related Products
ActivX™ TAMRA-FP Serine Hydrolase Probe
ActivX™ Desthiobiotin-FP Serine Hydrolase Probe

EnzChek™ Direct Phospholipase C Assay Kit (Invitrogen™)

This kit provides continuous monitoring of phosphotidyl choline specific phospholipase C (PLC) activity in microplate based biochemical assays. The assay uses a PCL selective fluorogenic substrate that emits a bright green emission upon cleavage.

The EnzChek® Direct Phospholipase C Assay Kit provides a simple and robust method for monitoring PC-PLC activity. Each kit provides enough reagents for 2 microplates, using 200 µl volumes in 96 well format. PC-PLC plays a crucial role in many cell signaling pathways involved in apoptosis and cell survival, as well as diseases ranging from cancer to HIV1-7. The assay uses a glycerophospho-ethanolamine with a dye-labeled sn-2 acyl chain as a substrate for PC-PLC. Substrate cleavage by PC-PLC before the phosphate releases the dye-labeled diacylglycerol, which produces a positive fluorescence signal that may be measured continuously. The reaction product has absorption and fluorescence emission maxima of 509 nm and 516 nm, respectively. Using purified enzyme from Bacillus cereus, the assay can detect as little as 10 mU⁄mL PC-PLC after one hour at room temperature. The kit has been proven useful for characterizing PC-PLC inhibition, and since it offers a direct measurement, the potential for false positives in a compound screen is eliminated.