Shop All Other Enzyme Assay Kits

PKA (Protein Kinase A) Colorimetric Activity Kit (Invitrogen™)

The PKA Activity research-use-only kit is a colorimetric activity assay designed for the quantification and detection of protein kinase A activity in cell lysates, tissue extracts and buffer samples.

This complete, ready-to-use kit includes a PKA substrate-coated 96-well plate(s), PKA standard (5,000 U), phospho-PKA substrate antibody, and other components to perform the assay. A 96-well microplate reader capable of reading optical density at 450 and 650 nm is required for use of this kit.

Performance characteristics
• Assay type: colorimetric activity kit
• Sample types: cell lysates, tissue extracts, buffer samples
• Sensitivity: 0.366 U/mL
• Standard curve range: 5 U/mL–25 U/mL
• Reactivity: species independent

Background
PKA is a member of an important class of kinases, referred to as Arg-directed kinases or AGC-family kinases, that includes cAMP-dependent protein kinase (PKA or cAPK), cGMP-dependent protein kinase (PKG), protein kinase C, Akt, and RSK. These kinases share a substrate specificity characterized by Arg at position 3 relative to the phosphorylated serine or threonine. The second messenger cyclic AMP (cAMP) activates PKA in mammalian cells and controls many cellular mechanisms such as gene transcription, ion transport, and protein phosphorylation2. Inactive PKA is a heterotetramer composed of a regulatory subunit (R) dimer and a catalytic subunit (C) dimer. In this inactive state, the pseudosubstrate sequences on the R subunits block the active sites on the C subunits. PKA shares substrate specificity with Akt (PKB) and PKC. Substrates that present this consensus sequence and are phosphorylated by PKA are Bad (Ser155), CREB (Ser133), and GSK-3.

PKA has been implicated in numerous cellular processes, including modulation of other protein kinases, regulation of intracellular calcium concentration, and regulation of transcription. Transcriptional responses to increased cAMP occur through activation of the cAMP response element–binding protein (CREB), cAMP response element modulator (CREM), and activating transcription factor 1 (ATF1). Each of these transcription factors contains a kinase-inducible domain containing a conserved site for phosphorylation by PKA.

Assay principle
The PKA activity kit is designed to quantitatively measure PKA activity in a variety of samples. A recombinant PKA standard is provided to generate a standard curve for the assay and all samples should be read off the standard curve. The kit utilizes an immobilized PKA substrate bound to a microtiter plate. Samples containing PKA will, in the presence of the supplied ATP, phosphorylate the immobilized PKA substrate. After a 90-minute incubation followed by a wash, a rabbit antibody specific for the phospho-PKA substrate binds to the modified immobilized substrate. An antibody specific for rabbit IgG labeled with peroxidase is also added to the plate to bind to the rabbit anti-phospho-PKA substrate. After a short incubation and wash, substrate is added and the intensity of the color developed is directly proportional to the amount of PKA in the samples and standards.

Related links
Learn more about ELISA kits
Learn more about other immunoassays

BACE1 (β-Secretase) FRET Assay Kit, red

BACE1 (β-secretase) is a key enzyme involved in the production of Amyloid beta-peptides (Abeta) found in extracellular amyloid plaques of Alzheimers disease (AD). In some cases, early onset familial AD can be attributed to a "Swedish" mutation in the amyloid precursor protein (APP), dramatically enhancing the cleavage of this protein by BACE1. This and other genetic and pathological evidence has led to therapeutic approaches focusing on the inhibition of BACE1 and other APP-cleaving enzymes, such as gamma-secretase. The BACE1 fluorescence resonance energy transfer (FRET) Assay Kit provides a sensitive and efficient method for screening potential BACE1 inhibitors. This kit uses purified baculovirus-expressed BACE1 and a new red FRET peptide substrate based on the "Swedish" mutant.

The BACE1 FRET Assay Kit offers:

• Red emission to reduce compound interference
• Excitation at 545 nm and read emission at 585 nm
• An easy-to-use, rapid, homogeneous assay that is performed in solution
• Versatile formatting for high-throughput screening
• Stable results—measurements can be made for up to 24 hours

The principle of the BACE1 FRET assay is as follows: The peptide substrate is synthesized with two fluorophores, a fluorescent donor (a rhodamine (Rh) derivative), and a proprietary quenching acceptor. The distance between these two groups has been selected so that upon light excitation, the donor (D) fluorescence energy is significantly quenched by the acceptor (A) through a quantum mechanical phenomenon known as resonance energy transfer (Figure 1). Upon cleavage by the protease, the fluorophore is separated from the quenching group, restoring the full fluorescence yield of the donor. Thus, a weakly fluorescent peptide substrate becomes highly fluorescent upon enzymatic cleavage; the increase in fluorescence is linearly related to the rate of proteolysis.

Source of BACE1 Enzyme:
A cDNA sequence encoding amino acids 1-460 of human BACE1, corresponding to the ectodomain, was expressed in recombinant, baculovirus-infected insect cells. Purified BACE1 exists as the proBACE1 form having an apparent molecular weight of 55 kDa and an N-terminal sequence of TQHGIRLPLR.

ActivX™ Desthiobiotin-FP Serine Hydrolase Probe (Thermo Scientific™)

Thermo Scientific Serine Hydrolase Probes are ActivX™ Fluorophosphonate (FP) and other tagged phosphonate probes to purify or assay serine hydrolase active sites using fluorescence, biotin-affinity, or mass spectrometry.

Features of the ActivX Desthiobiotin-FP Serine Hydrolase Probe:

Specific—labels the reactive site of active serine hydrolases
Compatible—tags available for capture, detection and Staudinger conjugation
Flexible—use for in vitro or intracellular enzyme labeling

These ActivX™ FP Probes feature a reactive fluorophosphonate group that specifically and covalently labels the active-site serine of enzymatically active serine hydrolases. These probes are available with a desthiobiotin (biotin analog) tag for selective enrichment, TAMRA fluorophore for detection or a reactive- azido group (Staudinger reagents) that facilitates multiplex labeling when used with phosphine- or alkyne-derivatized tags. These probes can be used to assess activity or screen small molecule inhibitors against enzymes derived from cell lysates, subcellular fractions, tissues and recombinant proteins.

Applications:
• Determine serine hydrolase enzyme activity in cells and lysates
• Mapping the active-site serine of functionally diverse serine hydrolase family members (e.g. proteases, lipases, esterases)
• Screen for small molecule binding affinities and active-site inhibition
• Profile serine hydrolases using fluorescent, Western blot or mass spectrometry workflows

ActivX active-site probes are especially advantageous for determining active enzyme levels compared to other protein expression profiling techniques that only measure abundance. Because many of the proteolytic enzymes in the serine hydrolase family are expressed as inactive proenzymes (zymogens), the ActivX FP probes selective enrichment only those enzymes that are functionally active and biologically relevant at the time of labeling. This feature also makes it possible to perform selective screening of inhibitors or other conditions that alter enzyme activity.

Active serine hydrolases labeled with ActivX FP Probes can be detected and quantified by Western blot, fluorescent gel imaging or mass spectrometry by using a compatible tag. The TAMRA-FP probe can be used to label and detect active serine hydrolases in samples by fluorescent gel imaging, capillary electrophoresis or mass spectrometry. An anti-TAMRA antibody is also available for immuno-enrichment of TAMRA-FP probe-labeled proteins. The Azido-FP probe is used in combination with a phosphine- or alkyne-derivatized tag for either detection or enrichment. Desthiobiotin-FP probes can be used for streptavidin-based enrichment and detection of active serine hydrolase proteins in Western blotting or mass spectrometry.

The serine hydrolase superfamily is one of the largest, most diverse enzyme families in eukaryotic proteomes. Serine hydrolases are generally grouped into two large families: serine proteases (e.g., trypsin, elastase and thrombin) and metabolic serine hydrolases. Metabolic serine hydrolases are divided into multiple enzyme subclasses (e.g., esterases, lipases, amidases and peptidases) based on structure, catalytic mechanism and substrate preference.

Related Products
ActivX™ TAMRA-FP Serine Hydrolase Probe
ActivX™ Azido-FP Serine Hydrolase Probe

ActivX™ Desthiobiotin-ADP Probe (Thermo Scientific™)

ActivX Desthiobiotin-ADP Probe, 16 × 9.9µg
Molecular Weight: 994.15
For use with the Pierce Kinase Enrichment kits.

Related Products
Pierce™ Kinase Enrichment Kit with ATP Probe
ActivX™ Desthiobiotin-ATP Probe
Pierce™ Kinase Enrichment Kit with ADP Probe

EnzChek™ Ultra Xylanase Assay Kit (Invitrogen™)

The EnzChek® Ultra Xylanase Assay Kit features a quick and convenient mix-and-read format for the detection and monitoring of xylanase activity. The increase in fluorescence resulting from xylanase activity is measured using a fluorometer or fluorescence microplate reader.

See our complete line of Fluorescence Microplate assays.

• Detect concentrations of xylanase activity as low as 1.5 mU/mL
• Suitable for a broad pH range (pH 4 to 10)
• Format allows for continuous detection of xylanase activity
• Excitation/emission maxima of ~358/455 nm, well suited for DAPI filter settings

The EnzChek® Ultra Xylanase Assay Kit provides the speed, sensitivity, and convenience required for measuring xylanase activity or for screening xylanase inhibitors in a high-throughput format. The hydrolysis of xylosidic linkages within the included Xylanase Substrate (hemicellulose polysaccharides) results in the unquenching of the attached fluorescent dyes. This kit can be used for continuous detection of xylanase activity, and offers broad dynamic and pH ranges. Each kit contains sufficient substrate for ~500 assays in a 96-well microplate format. Additionally, the kit contains a fluorescent reference standard that can be used to quantify the xylanase activity.

Amplex™ Red Phospholipase D Assay Kit (Invitrogen™)

The Amplex® Red Phospholipase D Assay Kit provides a sensitive and simplemethod to detect Phospholipase D (PLD) activity using a fluorescence microplate reader or fluorometer.

See our complete line of Fluorescence Microplate assays.

• Detect phospholipase D activity levels as low as 10 U/mL
• Format allows for multiple time point measurements
• Designed for minimal autofluorescence interference

PLD activity is monitored indirectly using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red reagent), a sensitive fluorogenic probe for hydrogen peroxide. PLD converts the phosphatidylcholine (lecithin) to choline, which is then oxidized by choline oxidase to betaine and hydrogen peroxide. In the presence of horseradish peroxidase, huydrogen peroxide reacts with the Amplex® Red reagent in a 1:1 stoichiometric ratio to generate the highly fluorescent product resorufin.

Because resorufin has absorption and fluorescence emission maxima of approximately 571 nm and 585 nm, respectively, there is little interference from autofluorescence in most biological samples.

Use Amplex® Red Assays for a Broad Range of Investigations
A wide variety of validated Amplex® Red assays are available for studying cell signaling and lipids, neurobiology, inflammation and immune function, and metabolism. We also offer Amplex® UltraRed Reagent (Cat. No. A36006), a second-generation reagent providing greater sensitivity and brighter fluorescence, and the Amplex® Red/UltraRed Stop Reagent (Cat. No. A33855). The Amplex® Red/UltraRed Stop Reagent provides convenience and control by allowing the fluorescence signal-generating reaction to be terminated at a user-determined time point. After addition of the stop reagent, the fluorescence signal remains stable for at least three hours. Custom assay design and packaging are also available.

NA-XTD™ Influenza Neuraminidase Assay Kit (Invitrogen™)

The NA-XTD™ Influenza Neuraminidase Assay Kit is a next-generation chemiluminescence-based assay that provides a longer signal read-out compared to the first-generation NA-Star® Influenza Neuraminidase Inhibitor Resistance Detection Kit. The NA-XTD™ kit includes detection reagents and microplates, eliminating the need for luminometers equipped with a reagent injector, and improving ease-of-use. This kit also includes complete assay protocols for quantitating sensitivity to neuraminidase inhibitors in various influenza virus isolates including: human influenza types A and B, A⁄H1N1 pandemic, avian, equine and porcine viruses.

Key product features:
• Superior performance—improved, long-lived light emission kinetics and read-time flexibility
• High sensitivity—high assay signal-to-noise, detection of low-virus concentrations, and wide assay dynamic range
• Simple instrumentation requirement—no reagent injectors or luminometer needed
• Multiple applications—neuraminidase inhibitor IC50 assays and cell-based virus quantitation

Long-Lived Light Emission Kinetics & Read-Time Flexibility
The NA-XTD™ assay yields much longer-lived light emission kinetics than does the NA-Star® assay, eliminating the need for luminometer instrumentation with reagent injectors and enabling read-time flexibility and batch-mode processing of assay plates. NA-XTD™ assay signal half-life is approximately 2 hours, longer than the 5-10 minute half-life of the NA-Star® assay signal. IC-50 values determined from data collected immediately or up to 3 hours following addition of NA-XTD™ Accelerator solution are identical (Figure 1).

High Sensitivity
The NA-XTD™ chemiluminescent assay provides higher detection sensitivity (better low-end detection limit), higher assay signal-to-noise ratio, and wider assay dynamic range than fluorescent assays with the MUNANA substrate. The NA-XTD™ assay also typically demonstrates slightly higher signal-to-noise than the NA-Star® assay. The NA-XTD™ assay provides 2–50-fold higher sensitivity by signal-to-noise ratio than MUNANA-based fluorescence assays, depending on the virus isolate (Figure 2). The NA-XTD™ assay provides a dynamic range of detection of 3–4 orders of magnitude of neuraminidase enzyme concentration, compared to 2–3 orders of magnitude range with fluorescent MUNANA assays. The wide chemiluminescent neuraminidase assay range enables determination of IC-50 values over a wide range of virus concentrations, eliminating the need to titer virus prior to performing IC50 determination assays (Figure 3).

Simple Instrumentation Requirement
The NA-XTD ™ assay can be used for virus quantitation in media samples from 96-well microplates or other virus cultures for monitoring viral growth or infection, or for performing viral inhibition assays in a cell-based system. Optimally, a small sample of culture media is removed and assayed directly with NA-XTD™ reagents, permitting multiple samples to be assayed over time (Figure 4).

Multiple Applications in One Complete Kit
The NA-XTD™ Assay Buffer is used as diluent for virus samples, neuraminidase inhibitors and NA-XTD™ substrate. An optional NA Sample Prep Buffer is also included for Triton® X-100 detergent addition to virus preparations, which increases NA activity in some virus preparations. The next-generation NA-XTD™ Accelerator solution triggers high intensity light emission from the NA-XTD™ reaction product. For added convenience and assay performance, the kit includes NA-Star™ Detection Microplates. These 96-well solid white assay microplates were selected for optimum assay performance, including high signal intensity, low background, and minimum well-to-well cross-talk. The kit includes a comprehensive assay protocol that provides virus and neuraminidase inhibitor (NI) dilution recommendations, a recommended plate layout for NI sensitivity assays, a protocol for virus quantitation, and a literature reference list. The NA-XTD™ Influenza Neuraminidase Assay Kit is compatible with a wide range of luminometers, including single-mode and multi-mode instruments, with no need for injectors.

For Research Use Only. Not for use in diagnostics procedures.

KDalert™ GAPDH Assay Kit with Manual (Invitrogen™)

The Ambion® KDalert™ GAPDH Assay Kit is for the reliable measure of GAPDH enzyme activity in cultured human, mouse, or rat cells in less than 30 minutes using a microplate fluorometer. The kit includes sufficient reagents for 375 reactions.

• Assess GAPDH siRNA delivery in 1/3 the time for 1/3 the cost of real-time PCR
• Analyze 1–96 samples simultaneously
• Measure both GAPDH siRNA-induced knockdown AND transfection-induced toxicity
• Compatible with a wide variety of cells and a broad range of culture conditions

The KDalert GAPDH Assay Kit is an ideal positive control for transfection optimization experiments and also measures transfection induced cytoxicity. It is designed for use with Ambion® Silencer® GAPDH siRNA.

Rapid, Time-Saving Procedure
Use the assay to optimize siRNA transfection by transfecting individual cell samples with a GAPDH siRNA and a negative control siRNA. Two to three days after transfection, simply add the included cell lysis buffer to the cells, incubate for 20 minutes, add the diluted master mix of assay reagents, and read the increase in fluorescence four minutes later using a microplate or standard fluorometer. The assay procedure can be completed in about 30 minutes with minimal sample handling.

One Assay for Two Readouts
Because GAPDH is expressed at relatively constant levels, the assay can also be used to monitor transfection agent induced toxicity. For this analysis, GAPDH enzyme activity from negative control siRNA-transfected cells is compared to that of untreated cells. Reduced GAPDH activity in negative control-transfected cells compared to non-transfected cells is an indication that the transfection-induced cytotoxicity.

Accessory Products:
The KDalert™ Kit is designed for use with Silencer® GAPDH siRNAs (SKUs #AM4605, AM4633, AM4634, AM4624, AM4632, or AM4631). Additional KDalert™ Lysis Buffer (SKU #AM8790G) is also available separately.

EnzChek™ Myeloperoxidase (MPO) Activity Assay Kit (Invitrogen™)

Myeloperoxidase (MPO) is a unique peroxidase that, in addition to its peroxidation activity, also catalyzes the conversion of hydrogen peroxide (H2O2) and chloride (Cl-) to hypochlorous acid (HOCl). The EnzChek® Myeloperoxidase (MPO) Activity Assay Kit provides assays for the determination of both chlorination and peroxidation activities of MPO in solution and in cell lysates. For detection of chlorination, the kit includes nonfluorescent 3'-(p-aminophenyl) fluorescein (APF), which is selectively cleaved by hypochlorite (-OCl) to yield fluorescein. Peroxidation is detected using nonfluorescent Amplex® UltraRed reagent (A36006), which is oxidized by the H2O2-generated redox intermediates MPO-I and MPO-II to form a fluorescent product. The EnzChek® Myeloperoxidase Activity Assay Kit can be used to continuously detect these activities at room temperature over a broad dynamic range (1.5 to 200 ng/mL). The speed (30 minutes), sensitivity, and mix-and-read convenience make this kit ideal for measuring MPO activities and for high-throughput screening for MPO-specific inhibitors.

ActivX Desthiobiotin-GTP Probe (Thermo Scientific™)

Thermo Scientific Pierce ActivX Desthiobiotin-GTP Probe covalently label the active site of GTPases and GTPase subunits of G-protein coupled receptors enabling their selective enrichment thereby allowing identification and profiling of target enzyme classes across samples or to assess the specificity and affinity of enzyme inhibitors.

Features of ActivX Desthiobiotin-GTP Probe:

Specific—label only the conserved active-site lysines of nucleotide-binding proteins
Compatible—use for in vitro labeling of GTPase enzymes derived from cells or tissues.
Flexible—use with Western blot or mass spectrometry (MS) workflows

Applications of ActivX Desthiobiotin-GTP Probe:
• Broad enrichment of GTP-binding proteins from tissues, cells and sub-cellular proteomes
• Enrichment of enzymes based on function
• Profiling of dozens to hundreds of inhibitor targets

ActivX Desthiobiotin-GTP Probe structure consists of a modified biotin attached to the nucleotide by a labile acyl-phosphate bond. After removal of GTP or GDP nucleotides from enzymes, the desthiobiotin-GTP probe can be used to covalently modify conserved lysine residues in the GTPase nucleotide-binding site. Desthiobiotin-GTP can selectively enrich, identify and profile target enzyme classes in samples. Pre-incubation of samples with small-molecule inhibitors that compete with active-site probes can be used to determine inhibitor binding affinity and target specificity.

Assessment of active-site labeling can be accomplished by either Western blot or mass spectrometry (MS). For the Western blot workflow, desthiobiotin-labeled proteins are enriched for SDS-PAGE analysis and subsequent detection with specific antibodies. For the MS workflow, desthiobiotin-labeled proteins are reduced, alkylated and enzymatically digested to peptides. Only the desthiobiotin-labeled, active-site peptides are enriched for analysis by LC-MS/MS. Both workflows can be used for determining inhibitor target binding, but only the MS workflow can identify global inhibitor targets and off-targets.

More Product Data
GTPase enrichment using a new active-site probe

Related Products
Pierce™ GTPase Enrichment Kit with GTP Probe

ActivX™ TAMRA-FP Serine Hydrolase Probe (Thermo Scientific™)

Thermo Scientific Serine Hydrolase Probes are ActivX™ Fluorophosphonate (FP) and other tagged phosphonate probes to purify or assay serine hydrolase active sites using fluorescence, biotin-affinity, or mass spectrometry.

Features of the ActivX TAMRA-FP Serine Hydrolase Probe:

Specific—labels the reactive site of active serine hydrolases
Compatible—tags available for capture, detection and Staudinger conjugation
Flexible—use for in vitro or intracellular enzyme labeling

These ActivX™ FP Probes feature a reactive fluorophosphonate group that specifically and covalently labels the active-site serine of enzymatically active serine hydrolases. These probes are available with a desthiobiotin (biotin analog) tag for selective enrichment, TAMRA fluorophore for detection or a reactive- azido group (Staudinger reagents) that facilitates multiplex labeling when used with phosphine- or alkyne-derivatized tags. These probes can be used to assess activity or screen small molecule inhibitors against enzymes derived from cell lysates, subcellular fractions, tissues and recombinant proteins.

Applications:
• Determine serine hydrolase enzyme activity in cells and lysates
• Mapping the active-site serine of functionally diverse serine hydrolase family members (e.g. proteases, lipases, esterases)
• Screen for small molecule binding affinities and active-site inhibition
• Profile serine hydrolases using fluorescent, Western blot or mass spectrometry workflows

ActivX active-site probes are especially advantageous for determining active enzyme levels compared to other protein expression profiling techniques that only measure abundance. Because many of the proteolytic enzymes in the serine hydrolase family are expressed as inactive proenzymes (zymogens), the ActivX FP probes selective enrichment only those enzymes that are functionally active and biologically relevant at the time of labeling. This feature also makes it possible to perform selective screening of inhibitors or other conditions that alter enzyme activity.

Active serine hydrolases labeled with ActivX FP Probes can be detected and quantified by Western blot, fluorescent gel imaging or mass spectrometry by using a compatible tag. The TAMRA-FP probe can be used to label and detect active serine hydrolases in samples by fluorescent gel imaging, capillary electrophoresis or mass spectrometry. An anti-TAMRA antibody is also available for immuno-enrichment of TAMRA-FP probe-labeled proteins. The Azido-FP probe is used in combination with a phosphine- or alkyne-derivatized tag for either detection or enrichment. Desthiobiotin-FP probes can be used for streptavidin-based enrichment and detection of active serine hydrolase proteins in Western blotting or mass spectrometry.

The serine hydrolase superfamily is one of the largest, most diverse enzyme families in eukaryotic proteomes. Serine hydrolases are generally grouped into two large families: serine proteases (e.g., trypsin, elastase and thrombin) and metabolic serine hydrolases. Metabolic serine hydrolases are divided into multiple enzyme subclasses (e.g., esterases, lipases, amidases and peptidases) based on structure, catalytic mechanism and substrate preference.

Related Products
ActivX™ Desthiobiotin-FP Serine Hydrolase Probe
ActivX™ Azido-FP Serine Hydrolase Probe

Active Rap1 Pull-Down and Detection Kit (Thermo Scientific™)

The Thermo Scientific Pierce Active Rap1 Pull-Down and Detection Kit is a complete kit for selective enrichment and detection of GTP-bound Rap1 GTPase through specific protein interaction with the RalGDS protein-binding domain.

The Active Rap1 Pull-Down and Detection Kit includes purified GST-RalGDS Rap-binding domain (RBD), glutathione agarose resin, positive and negative controls (GTPγS and GDP, respectively), lysis/binding/wash buffer, anti-Rap1 antibody, sample buffer, spin columns and collection tubes. The kit was validated using lysates from NIH 3T3 cells, a cell line that is known to have robust Rap1 activity.

Features of the Active Rap1 Pull-Down and Detection Kit:

Highly sensitive and accurate—optimized reagents, specific anti-Rap1 antibody and Western blot procedure ensure accurate controls and semi-quantitative results
Validated—functionally tested for Rap1 detection to ensure quality and performance
Compatible—effective with a variety of cell types from mouse, rat and human sources

Applications:
• Follow activation of Rap1 GTPase during cell differentiation, migration, division and cytoskeletal rearrangement
• Study active Rap1 signaling in cell junctions and adhesions
• Monitor Rap1 activity after stimulation with growth factors
• Screen small molecule inhibitors for their effects on Rap1 activity

The Active Rap1 Pull-Down and Detection Kit was validated for function and specificity of the active Rap1 enrichment method using cell lysates treated with GTPγS to activate endogenous Rap1 and compared to lysates treated with GDP to inactivate the small GTPase. GTPγS treatment traps Rap1 in the GTP-bound form (active), resulting in a strong signal when endogenous Rap1 is present. GDP treatment pushes Rap1 into the GDP-bound state (inactive), resulting in minimal or no signal, regardless of Rap1 protein levels. This kit was optimized for Western blot detection using an HRP-conjugated secondary antibody (Goat Anti-rabbit IgG, Part No. 31460) and Thermo Scientific SuperSignal West Pico Chemiluminescent Substrate (Part No. 34080). The kit contains sufficient components for 30 pull-down assays.

Rap Background:
The Rap GTPases are part of the Ras family of GTPases and are encoded by Rap1a, Rap1b and Rap2. Rap GTPases are structurally similar to Ras GTPases and have similar effector and activator proteins, although Rap GTPases have different functional activities than Ras. While Ras is involved in cell proliferation and survival, Rap1 regulates cytoskeletal rearrangements, cell adhesion and cell junction formation.

The specificity of Rap1 and Ras is mediated by their respective upstream regulators and downstream effectors. The GEFs for Rap contain a CDC25 homology domain that mediates the GDP/GTP exchange reaction and a REM domain (Ras exchange motif). Some Rap GEFs include C3G, Epac1 and 2, RasGRP2, PDZ-GEF1 and 2 and PLCε. The binding domain used in this kit is RalGDS, a GEF that contains an RA domain to which Rap1 has a higher binding affinity than Ras. The RapGAPs, including Rap1GAP and the Spa-1 family, insert an asparagine side chain into the nucleotide-binding pocket to catalyze the GTP hydrolysis reaction. Rap effector proteins, including RAPL, Riam, AF-6, Krit1, RacGEFs, Tiam1, Vav2, Rho GAPs and ARAP3, are involved in cell-cell junctions and adhesion and are often localized to the membrane or at cell-cell junctions. Besides Ras, there is also cross-talk between Rap and Rho GTPases.

More Product Data
Measure activation of small GTPases via their specific downstream effectors

NA-Star™ Influenza Neuraminidase Inhibitor Resistance Detection Kit (Invitrogen™)

The NA-Star® Influenza Neuraminidase Inhibitor Resistance Detection Kit is designed for the rapid and sensitive quantitation of influenza neuraminidase inhibitor resistance in dilutions of virus culture medium in a 96-well microplate format. The NA-Star® Influenza Neuraminidase Inhibitor Reagent kit provides all necessary assay reagents enabling improved global assay standardization and more accurate comparison of results lab-to-lab.

The NA-Star® Influenza Neuraminidase Inhibitor Resistance Detection Kit includes everything you need to quantitate neuraminidase activity and neuraminidase inhibitor resistance in avian, equine, human (types A and B), and porcine influenza viruses. The kit's fast and easy protocol and convenient 96-well plate format make it ideal for monitoring influenza virus neuraminidase inhibitor resistance, as well as high-throughput inhibitor compound screening.

• Includes pre-made solutions for all required reagents, enabling you to standardize assays and compare results between labs easily.
• Provides up to 50-fold higher sensitivity than assays using fluorescent methylumbelliferone N-acetylneuraminic acid (MUNANA) substrate.
• Dynamic range of four orders of magnitude enables you to quantitate virus isolates over a broad range of virus concentration and with varying levels of neuraminidase activity without performing numerous sample dilutions.
• Fast and easy protocol enables you to complete assays in less than 1.5 hours, providing rapid assay throughput.

Complete Kit for Measuring the Neuraminidase Inhibitor Resistance of Influenza Viruses
The NA-Star® Influenza Neuraminidase Inhibitor Resistance Detection Kit includes NA-Star chemiluminescent substrate for neuraminidase, all necessary assay reagents, and microplates -- everything you need for the fast, accurate quantitation of neuraminidase inhibitor resistance in influenza virus isolates.

Get Results in Less than 1.5 Hours
The kit's fast and easy protocol enables you to perform assays in less than 1.5 hours. Simply incubate your virus samples with dilutions of neuraminidase inhibitor, add NA-Star chemiluminescent substrate, incubate again, and then add the accelerator solution, which triggers light emission from the reaction product. Light signal is measured with a luminometer, including multi-mode instruments that include a luminometer mode. For best results, use a luminometer with an automatic injector to add the accelerator solution. You may use a luminometer without an injector, provided you add reagents with a multichannel pipettor and read the plate immediately.

Up to 50-Fold Higher Sensitivity than MUNANA-Based Assays
The kit's chemiluminescent-based detection technology provides a wide dynamic range -- greater than four orders of magnitude of neuraminidase concentration (two orders of magnitude greater than fluorescent MUNANA-based assays) -- enabling you to quantitate neuraminidase inhibitor resistance levels over a broad range of virus concentration and neuraminidase activity without having to test multiple virus dilutions.

Pre-Made Reagents Make it Easy to Standardize Assays
Quality-tested protocols, microplates, and pre-made reagents eliminate variability, enabling you to easily standardize assay performance and results across experiments and different laboratories.

Monitor Drug Resistance of Human, Avian, and Livestock Influenza Viruses
The kit's ease of use, standardization, and broad range of compatible species (avian, equine, human types A and B, and porcine influenza viruses) make it an important new tool for assessing and researching drug resistance of influenza in humans, birds, and livestock.

Screen for New Inhibitors and Develop New Vaccines
The kit has many other applications, including screening for new neuraminidase inhibitors and quantitating viral neuraminidase activity for vaccine development. It is also ideal for quantitating neuraminidases from bacteria, including S. typhimurium, C. perfringens, V. cholera, and likely others.

For Research Use Only. Not for use in diagnostic procedures.

EnzChek™ Paraoxonase Assay Kit (Invitrogen™)

The EnzChek® Paraoxonase Assay Kit is a highly sensitive, homogenous fluorometric assay for the organophosphatase acitivty of paraoxonase. Based on the hydrolysis of a fluorogenic analog, this assay is >10-fold more sensitive than the colorimetric assay, and unlike the colorimetric assay, can distinguish samples of very similar paraoxonase activity. Under standard conditions, the assay requires only 5 µl of serum, yields a signal in as little as 15 minutes, and is linear for up to 50 minutes. The assay requires only a single reaction that can be either continuously monitored or terminated using the stop reagent included in the kit.

Glutathione Reductase Fluorescent Activity Kit (Invitrogen™)

The Glutathione Reductase Activity research-use-only kit is a fluorescent activity assay designed for the quantification and detection of glutathione reductase activity in serum, plasma, RBCs and cell lysates.

This complete, ready-to-use kit includes black 96-well plate(s), glutathione reductase standard (200 mU/mL), glutathione reductase substrate, and other components to perform the assay. A 96-well microplate reader capable of reading the fluorescent emission at 510 nm, with excitation at 390 nm, is required for use of this kit.

Performance characteristics
• Assay type: fluorescent activity kit
• Sample types: serum, plasma, RBCs, and cell lysates
• Sensitivity: 0.009 mU/mL
• Standard curve range: 0.15 mU/mL–5 mU/mL
• Reactivity: human

Background
Glutathione Reductase (GR) plays an indirect but essential role in the prevention of oxidative damage within the cell by helping to maintain appropriate levels of intracellular glutathione (GSH). GSH, in conjuction with the enzyme glutathione peroxidase (GP), is the acting reductant responsible for minimizing harmful hydrogen peroxide cellular levels. The regeneration of GSH is catalyzed by GR. GR is a ubiquitous 100-120 kDa dimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione, using beta-nicotinamide dinucleotide phosphate (NADPH) as the hydrogen donor.

Molecules such as NADPH act as hydride donors in a variety of enzymatic processes. NADPH has been suggested to also act as an indirectly operating antioxidant, given its role in the re-reduction of GSSG to GSH and thus maintaining the anti-oxidative power of glutathione. This assay has been validated for human serum, EDTA and heparin plasma, and isolated erythrocytes. Most cell lysates should also be compatible. GR activity varies across tissues and species, however this kit may measure GR activity from sources other than human.

Assay principle
The Glutathione Reductase Activity kit is designed to quantitatively measure Glutathione Reductase (GR) activity in a variety of samples. A GR standard is provided to generate a standard curve for the assay and all samples should be read off the standard curve. The kit utilizes a proprietary non-fluorescent detection reagent that will covalently bind to the free thiol group on GSH generated in the reduction of oxidized glutathione (GSSG) to yield a highly fluorescent product. After mixing the sample or standard with detection reagent and incubating at room temperature, the fluorescent product is read at 510 nm in a fluorescent plate reader with excitation at 390 nm

Related links
Learn more about ELISA kits
Learn more about other immunoassays