Shop All Other Enzyme Assay Kits

Catalase Colorimetric Activity Kit (Invitrogen™)

The Catalase Activity research-use-only kit is a colorimetric activity assay designed for the quantification and detection of catalase activity in serum, plasma, cells, tissues and erythrocyte lysates.

This complete, ready-to-use kit includes clear 96 well plate(s), catalase standard (100 Unit/mL), catalase substrate, and other components to perform the assay. A 96-well microplate reader capable of reading optical density at 560 nm (acceptable range: 540-580 nm) is required for use of this kit.

Performance characteristics
• Assay type: colorimetric activity kit
• Sample types: serum, plasma, cells, tissues, and erythrocyte lysates.
• Sensitivity: 0.052 U/mL
• Standard curve range: 0.15 U/mL–5.0 U/mL
• Reactivity: species independent

Background
Hydrogen peroxide is one of the most frequently occurring reactive oxygen species. It is formed either in the environment or as a by-product of aerobic metabolism, superoxide formation and dismutation, or as a product of oxidase activity. Both excessive hydrogen peroxide and its decomposition product hydroxyl radical, formed in a Fenton-type reaction, are harmful for most cell components. Its rapid removal is essential for all aerobically living prokaryotic and eukaryotic cells. However, hydrogen peroxide can act as a second messenger in signal transduction pathways, in immune cell activation, inflammation processes, cell proliferation, and apoptosis.

One of the most efficient ways of removing peroxide is through the enzyme catalase, which is encoded by a single gene and is highly conserved among species. Mammals, including humans and mice, express catalase in all tissues, and a high concentration of catalase can be found in the liver, kidneys, and erythrocytes. The expression is regulated at transcription, post-transcription, and post-translation levels. High catalase activity is detected in peroxisomes. More recently, short wavelength UV radiation has been shown to produce reactive oxygen species (ROS) through the action of catalase. This response is thought to act as a mechanism to protect DNA by converting damaging UV radiation into ROS species that can be metabolized and detoxified by cellular antioxidant enzymes. This assay has been validated for serum, EDTA and heparin plasmas from a variety of species.

Assay principle
The Catalase Activity kit is designed to quantitatively measure catalase activity in a variety of samples. A bovine catalase standard is provided to generate a standard curve for the assay and all samples should be read off of the standard curve. Samples are diluted in the provided Assay Buffer and added to the wells of a half area clear plate. Hydrogen peroxide is added to each well and the plate incubated at room temperature for 30 minutes. The supplied Colorimetric Detection Reagent is added, followed by diluted horseradish peroxidase, and incubated at room temperature for 15 minutes. The HRP reacts with the substrate in the presence of hydrogen peroxide to convert the colorless substrate into a pink-colored product. The colored product is read at 560 nm. Increasing levels of catalase in the samples causes a decrease in hydrogen peroxide concentration and a reduction in pink product.

Catalase unit definition
One unit of Catalase decomposes one micromole of hydrogen peroxide per minute at 25°C and pH 7.0.

Related links
Learn more about ELISA kits
Learn more about other immunoassays

EnzChek™ Phospholipase A1 Assay Kit (Invitrogen™)

This kits takes our stand-alone assay for phospholipase A1, PLA1 (A10070) and combines the necessary reagents to run 2 to 10 complete 96 well microplate assays that monitor activity in purified enzyme preparations and cell lysates. The importance of phospholipases in cellular signaling, lipid metabolism, inflammatory responses and pathological disorders related to these processes has stimulated demand for fluorescence-based activity monitoring methods. In particular the phospholipases resident in plasma and endothelium can perturb circulating LDL and HDL particles, creating pro-artherogenic forms. Recent evidence is drawing a link between these lipases and the progression of several severe neurodegenerative diseases, including Alzheimer's. Molecular Probes’ fluorogenic phospholipase A1 substrates is designed to provide continuous monitoring of phospholipase A1 (PLA1) in purified enzyme preparations, cell lysates and living cells. PLA-1 improves upon two existing reagents in two ways: first it is now PLA-1 specific and secondly it has improved the assay quality by decreasing initial background noise.

Histone Demethylase Fluorescent Activity Kit (Invitrogen™)

The Histone Demethylase Activity research-use-only kit is a fluorescent activity assay designed for the quantification and detection of histone demethylase activity of lysine-specific histone demethylase 1 (LSD1)-and Jumonji-type demethylases.

This kit includes black 96-well plate(s), LSD1/JMJD2A assay buffers, formaldehyde standard, and other components to perform the assay. This kit does not contain demethylase enzyme samples. A source of LSD1-type or Jumonji-type demethylase, along with any cofactors, enzyme substrates, inhibitors, and/or activators need to be supplied by the user. A fluorescence 96-well microplate reader capable of reading fluorescent emission at 510 nm, with excitation at 450 nm, is required for use of this kit.

Performance characteristics
• Assay type: fluorescent activity kit
• Sample types: lysine-specific histone demethylase 1 (LSD1) and Jumonji-type demethylases
• Standard curve range: 0.128 uM–0.64 uM for LSD1, 2.5 uM-10uM for JMJD2A
• Reactivity: human

Background
Histone Demethylase (HDM) catalyzes the site-specific demethylation of methyl-lysine residues in histones to dynamically regulate chromatin structure, gene expression, and potentially other genomic functions. Lysine-specific HDMs were first discovered in 2004 and are currently among the most actively studied formaldehyde-producing enzymes. At present, there are two known classes of HDMs: the flavin adenine dinucleotide (FAD)-dependent Lysine Specific Demethylase 1 (LSD1) family and the Fe(II)-dependent Jumonji C (JmjC) family. Although the LSD1 and JmjC HDMs employ different cofactors and catalytic mechanisms, both produce formaldehyde as a byproduct of the demethylation reaction.

Despite their biological importance, HDMs have proven difficult to quantitatively assay owing to their relatively low turnover numbers, hindering understanding of their kinetic properties, substrate specificities, and reaction mechanisms. This assay has been validated for lysine-specific histone demethylase 1 (LSD1)-and Jumonji-type demethylases. For HDM samples in cell lysates, we include a specially formulated Cell Lysis Buffer, that has been shown not to interfere with formaldehyde detection. Cell lysis buffers containing SDS and Triton X-100 inhibit the formaldehyde signal reaction and should not be used.

Assay principle
The Histone Demethylase Activity kit is to quantitatively measure the enzymatic activity of formaldehyde-producing enzymes such as histone demethylases. The kit is unique in that the product of these enzymatic demethylation reactions, formaldehyde, is quantitated directly by a fluorescent product. No separation or washing is required. The kit has been validated for both LSD1 and JMJD2A histone demethylases (HDMs).

The kit provides optimized buffers for the HDMs LSD1 and JMJD2A, a stable formaldehyde standard, the Formaldehyde Detection Reagent (FDR), and two 96-well plates for detecting the generated fluorescent signal. The kit allows any enzymatic reaction generating formaldehyde to be measured. The end user will have to provide the demethylase system and any cofactors necessary for activity, along with any test inhibitors or activators. The kit allows end users to produce HDM activity in many in vivo and in vitro systems and then determine the activity by measuring formaldehyde generation. For in vitro studies, the HDM reaction should be carried out in our supplied buffers using optimized reaction conditions for the demethylation.

Following the formaldehyde generating reaction, the reaction can be stopped by addition of a suitable inhibitor. The FDR is then added to all the wells. If calibration to formaldehyde is needed (for cross lab comparisons) then a formaldehyde standard curve generated from the supplied standard should be run. After a short incubation at 37°C for 30 minutes, the fluorescent product is read at 510 nm in a fluorescent plate reader with excitation at 450 nm.

Related links
Learn more about ELISA kits
Learn more about other immunoassays

NA-XTD™ Influenza Neuraminidase Assay Reagent Set, no plates included (Invitrogen™)

The NA-XTD™ Influenza Neuraminidase Assay Kit is a next-generation chemiluminescence-based assay that provides a longer signal read-out compared to the first-generation NA-Star® Influenza Neuraminidase Inhibitor Resistance Detection Kit. The NA-XTD™ kit includes detection reagents and microplates, eliminating the need for luminometers equipped with a reagent injector, and improving ease-of-use. This kit also includes complete assay protocols for quantitating sensitivity to neuraminidase inhibitors in various influenza virus isolates including: human influenza types A and B, A⁄H1N1 pandemic, avian, equine and porcine viruses.

Key product features:
• Superior performance—improved, long-lived light emission kinetics and read-time flexibility
• High sensitivity—high assay signal-to-noise, detection of low-virus concentrations, and wide assay dynamic range
• Simple instrumentation requirement—no reagent injectors or luminometer needed
• Multiple applications—neuraminidase inhibitor IC50 assays and cell-based virus quantitation

Long-Lived Light Emission Kinetics & Read-Time Flexibility
The NA-XTD™ assay yields much longer-lived light emission kinetics than does the NA-Star® assay, eliminating the need for luminometer instrumentation with reagent injectors and enabling read-time flexibility and batch-mode processing of assay plates. NA-XTD™ assay signal half-life is approximately 2 hours, longer than the 5-10 minute half-life of the NA-Star® assay signal. IC-50 values determined from data collected immediately or up to 3 hours following addition of NA-XTD™ Accelerator solution are identical (Figure 1).

High Sensitivity
The NA-XTD™ chemiluminescent assay provides higher detection sensitivity (better low-end detection limit), higher assay signal-to-noise ratio, and wider assay dynamic range than fluorescent assays with the MUNANA substrate. The NA-XTD™ assay also typically demonstrates slightly higher signal-to-noise than the NA-Star® assay. The NA-XTD™ assay provides 2–50-fold higher sensitivity by signal-to-noise ratio than MUNANA-based fluorescence assays, depending on the virus isolate (Figure 2). The NA-XTD™ assay provides a dynamic range of detection of 3–4 orders of magnitude of neuraminidase enzyme concentration, compared to 2–3 orders of magnitude range with fluorescent MUNANA assays. The wide chemiluminescent neuraminidase assay range enables determination of IC-50 values over a wide range of virus concentrations, eliminating the need to titer virus prior to performing IC50 determination assays (Figure 3).

Simple Instrumentation Requirement
The NA-XTD ™ assay can be used for virus quantitation in media samples from 96-well microplates or other virus cultures for monitoring viral growth or infection, or for performing viral inhibition assays in a cell-based system. Optimally, a small sample of culture media is removed and assayed directly with NA-XTD™ reagents, permitting multiple samples to be assayed over time (Figure 4).

Multiple Applications in One Complete Kit
The NA-XTD™ Assay Buffer is used as diluent for virus samples, neuraminidase inhibitors and NA-XTD™ substrate. An optional NA Sample Prep Buffer is also included for Triton® X-100 detergent addition to virus preparations, which increases NA activity in some virus preparations. The next-generation NA-XTD™ Accelerator solution triggers high intensity light emission from the NA-XTD™ reaction product. For added convenience and assay performance, the kit includes NA-Star™ Detection Microplates. These 96-well solid white assay microplates were selected for optimum assay performance, including high signal intensity, low background, and minimum well-to-well cross-talk. The kit includes a comprehensive assay protocol that provides virus and neuraminidase inhibitor (NI) dilution recommendations, a recommended plate layout for NI sensitivity assays, a protocol for virus quantitation, and a literature reference list. The NA-XTD™ Influenza Neuraminidase Assay Kit is compatible with a wide range of luminometers, including single-mode and multi-mode instruments, with no need for injectors.

For Research Use Only. Not for use in diagnostics procedures.

KDalert™ GAPDH Assay Kit (Invitrogen™)

The Ambion® KDalert™ GAPDH Assay Kit is for the reliable measure of GAPDH enzyme activity in cultured human, mouse, or rat cells in less than 30 minutes using a microplate fluorometer. The kit includes sufficient reagents for 375 reactions.

• Assess GAPDH siRNA delivery in 1/3 the time for 1/3 the cost of real-time PCR
• Analyze 1-96 samples simultaneously
• Measure both GAPDH siRNA-induced knockdown AND transfection-induced toxicity
• Compatible with a wide variety of cells and a broad range of culture conditions

The KDalert GAPDH Assay Kit is an ideal positive control for transfection optimization experiments and also measures transfection induced cytoxicity. It is designed for use with Ambion® Silencer® GAPDH siRNA.

Rapid, Time-Saving Procedure
Use the assay to optimize siRNA transfection by transfecting individual cell samples with a GAPDH siRNA and a negative control siRNA. Two to three days after transfection, simply add the included cell lysis buffer to the cells, incubate for 20 minutes, add the diluted master mix of assay reagents, and read the increase in fluorescence four minutes later using a microplate or standard fluorometer. The assay procedure can be completed in about 30 minutes with minimal sample handling.

One Assay for Two Readouts
Because GAPDH is expressed at relatively constant levels, the assay can also be used to monitor transfection agent induced toxicity. For this analysis, GAPDH enzyme activity from negative control siRNA-transfected cells is compared to that of untreated cells. Reduced GAPDH activity in negative control-transfected cells compared to non-transfected cells is an indication that the transfection-induced cytotoxicity.

Accessory Products:
The KDalert™ Kit is designed for use with Silencer® GAPDH siRNAs (SKUs #AM4605, AM4633, AM4634, AM4624, AM4632, or AM4631). Additional KDalert™ Lysis Buffer (SKU #AM8790G) is also available separately.

Active Ras Pull-Down and Detection Kit (Thermo Scientific™)

The Thermo Scientific Active Ras Pull-Down and Detection Kit enables selective enrichment and detection of GTP-bound Ras GTPase through a specific protein interaction with the Raf1 protein-binding domain.

The Active Ras Pull-Down and Detection Kit includes purified GST-Raf1 Ras-binding domain (RBD), glutathione agarose resin, positive and negative controls (GTPγS and GDP, respectively), lysis/binding/washing buffer, anti-Ras antibody, SDS sample buffer, spin columns and collection tubes. The kit was validated using lysates from NIH 3T3 cells, a cell line known to have robust Ras activity.

Features of the Active Ras Pull-Down and Detection Kit:

Highly sensitive and accurate—optimized reagents, specific anti-Ras antibody and Western blot procedure ensure accurate controls and semi-quantitative results
Validated—functionally tested for Ras detection to ensure quality and performance
Compatible—effective for a variety of cell types from mouse, rat and human sources

Applications:
• Follow activation of Ras GTPase during cell differentiation, migration, division, and cytoskeletal rearrangement
• Study the role of active Ras in cancer and angiogenesis
• Monitor Ras activity after stimulation with growth factors
• Screen small molecule inhibitors for their effect on Ras activity

The Active Ras Pull-Down and Detection Kit was validated for the function and specificity of the active Ras enrichment method using cell lysates treated with GTPγS to activate endogenous Ras and compared to lysates treated with GDP to inactivate the small GTPase. GTPγS treatment trap Ras in the GTP-bound, active form, resulting in a strong signal when endogenous Ras is present. GDP treatment pushes Ras into the GDP-bound, inactive state, resulting in little to no signal, regardless of Ras protein levels. The kit is optimized for Western blot detection with an HRP-conjugated secondary antibody (Goat anti-Mouse IgG, Part No. 31430) and Thermo Scientific SuperSignal West Pico Chemiluminescent Substrate (Part No. 34080). Each kit contains sufficient components for 30 pull-down assays.

Kit components can also be used for immunofluorescent staining. Neuronal NS-1 cells were stimulated with NGF to study the spatial distribution of active Ras using the GST-RBD protein and anti-Ras antibody supplied in the kit.

Ras Background:
The Ras superfamily of GTPases, named after the rat sarcoma viral oncogene, contains many Ras isoforms, including K-Ras, H-Ras, and N-Ras. While the three isoforms are expressed at different levels in different types of cells, in general, activating mutations of at least one of these isoforms are present in ~15% of all cancers. The Ras proteins serve as initiators of intracellular signal transduction from extracellular molecules and associate with the plasma membrane via lipid modification and prenylation of its carboxy terminus. These modifications at the carboxy terminus determine the localization of Ras to distinct membrane microdomains, which dictates subsequent downstream signaling. Ras signaling pathways affect many cellular processes including proliferation, survival, vesicular trafficking and gene expression.

Signaling through Ras is central to many cellular responses, and activation of Ras is regulated by several GEF and GAP proteins. The GEF proteins mediate GTPase activation by dissociating GDP from the inactive Ras to allow binding of Ras to GTP. Conversely, GAP proteins inactivate GTPases by hydrolyzing GTP to GDP. Ras mediates downstream signaling by interacting with effector proteins, including Raf and PI3 kinase. Raf1 is a serine/threonine protein kinase that is part of the MAP kinase kinase signaling pathway that leads to the activation of ERK and p38, which influences proliferation and survival. PI3 kinase signaling results in activation of AKT and mTOR, which are central for cell growth and survival. Ras is also integral for cellular differentiation and development, including immune cell development and function.

More Product Data
Measure activation of small GTPases via their specific downstream effectors
Detection and localization of active GTPases in neuronal cell differentiation

Pierce™ GTPase Enrichment Kit with GTP Probe (Thermo Scientific™)

Thermo Scientific Pierce GTPase Enrichment Kit with GTP probe uses ActivX™ GTP Probes to covalently label the active site of GTPases and GTPase subunits of G-protein coupled receptors enabling their selective enrichment using the desthiobiotin tag allowing identification and profiling of target enzyme classes across samples or to assess the specificity and affinity of enzyme inhibitors.

Features of GTPase Enrichment Kit with GTP Probe:

Specific—label only the conserved active-site lysines of nucleotide-binding proteins
Compatible—use for in vitro labeling of GTPase enzymes derived from cells or tissues.
Flexible—use with Western blot or mass spectrometry (MS) workflows

Applications of GTPase Enrichment Kit with GTP Probe:
• Broad enrichment of GTP-binding proteins from tissues, cells and sub-cellular proteomes
• Enrichment of enzymes based on function
• Profiling of dozens to hundreds of inhibitor targets

Pierce GTPase Enrichment Kits with ActivX GTP Probes enable selective labeling and enrichment of small GTPases and large G-protein subunits. The ActivX Desthiobiotin-GTP Probe structure consists of a modified biotin attached to the nucleotide by a labile acyl-phosphate bond. After removal of GTP or GDP nucleotides from enzymes, the desthiobiotin-GTP probe can be used to covalently modify conserved lysine residues in the GTPase nucleotide-binding site. Desthiobiotin-GTP can selectively enrich, identify and profile target enzyme classes in samples. Pre-incubation of samples with small-molecule inhibitors that compete with active-site probes can be used to determine inhibitor binding affinity and target specificity.

Assessment of active-site labeling can be accomplished by either Western blot or mass spectrometry (MS). For the Western blot workflow, desthiobiotin-labeled proteins are enriched for SDS-PAGE analysis and subsequent detection with specific antibodies. For the MS workflow, desthiobiotin-labeled proteins are reduced, alkylated and enzymatically digested to peptides. Only the desthiobiotin-labeled, active-site peptides are enriched for analysis by LC-MS/MS. Both workflows can be used for determining inhibitor target binding, but only the MS workflow can identify global inhibitor targets and off-targets.

More Product Data
GTPase enrichment using a new active-site probe

Related Products
ActivX Desthiobiotin-GTP Probe

P450 Demethylation Fluorescent Activity Kit (Invitrogen™)

The P450 Demethylase Activity research-use-only kit is a fluorescent activity assay designed for the quantification and detection of P450 demethylating actrivity in liver microsomes or cerosomes such as Cyp P450 3A4, 2B4 and 2D6.

This kit includes black 96-well plate(s), assay buffer, formaldehyde standard, and other components to perform the assay. This kit does not contain P450 systems. Microsome, cerosome, baculosome, or supersome P450 systems, or recombinant P450, need to be supplied by the user. A fluorescence 96-well microplate reader capable of reading fluorescent emission at 510 nm, with excitation at 450 nm, is required for use of this kit.

Performance characteristics
• Assay type: fluorescent activity kit
• Sample types: demethylating P450 systems like liver microsomes or cerosomes such as Cyp P450 3A4, 2B4, and 2D6
• Standard curve range: 1.6 pmoles/100uL–20 pmoles/100uL
• Reactivity: human, rat

Background
The cytochromes P450 (P450s) are a superfamily of heme containing enzymes that display tremendous diversity with regard to substrate specificity and catalytic activity. P450s use a plethora of both exogenous and endogenous compounds as substrates in enzymatic reactions. Usually they form part of multicomponent electron transfer reactions. Catalysis by the eukaryotic P450 enzymes involves a multistep reaction cycle that includes two steps in which electron transfer is accomplished from a redox partner. The diflavin protein, NADPH cytochrome P450 reductase, contains both FAD and FMN and can transfer both electrons needed for the catalytic cycle3. In some P450 reactions, the second electron of the reaction cycle also can be delivered by cytochrome b5.

Lipid plays an important role in the reconstitution of P450-dependent activities after protein purification6. Most in vitro studies for the reconstitution of P450 activities use dilaurylphosphatidylcholine (DLPC) as the lipid component. The reconstitution of enzymatic activity involves a concentrated incubation of P450, its redox partners (NADPH and reductase), and lipid followed by dilution into the final assay components.

Assay principle
The P450 Demethylase Activity kit is designed to quantitatively measure the enzymatic activity of formaldehyde-producing enzymes such as cytochromes P450. The kit is unique in that the fluorescent substrate is not involved in the multicomponent P450 reaction, but measures the product of the demethylation, formaldehyde. No separation or washing is required. The kit has been validated for several P450 systems and should work with any biological system that is producing formaldehyde as a product of demethylation.

The kit provides an optimized buffer for P450, lyophilized vials of the cofactor NADPH for the reaction, a stable formaldehyde standard, the Formaldehyde Detection Reagent (FDR) and two 96-well plates for detecting the generated fluorescent signal. The end user will have to provide the microsomal, baculosome system or the recombinant P450, reductase and cytochrome b5 system and any cofactors necessary for activity, along with any candidate drugs, inhibitors, or activators being tested. The reaction should be carried out in our supplied buffer or a similar PBS based buffer system.

Following the P450 NADPH-induced reaction, the generation of formaldehyde can be stopped by addition of a suitable inhibitor, or the supplied stop solution of acetic acid. The FDR is then added to all the wells. If calibration to formaldehyde is needed (for cross lab comparisons) then a formaldehyde standard curve generated from the supplied standard should be run.

After a short incubation at 37°C for 30 minutes, the fluorescent product is read at 510 nm in a fluorescent plate reader with excitation at 450 nm. The P450 activity is determined based upon formaldehyde production.

Related links
Learn more about ELISA kits
Learn more about other immunoassays

Ceruloplasmin Colorimetric Activity Kit (Invitrogen™)

The Ceruloplasmin Activity research-use-only kit is a colorimetric activity assay designed for the quantification and detection of ceruloplasmin activity in serum and urine samples.

This complete, ready-to-use kit includes clear 96 well plate(s), ceruloplasmin standard (200 Units/mL), ceruloplasmin substrate, and other components to perform the assay. A 96-well microplate reader capable of reading optical density at 560 nm is required for use of this kit.

Performance characteristics
• Assay type: colorimetric activity kit
• Sample types: serum and urine samples
• Sensitivity: 3.26 mU/mL
• Standard curve range: 31.2 mU/mL–1,000 mU/mL
• Reactivity: species independent

Background
Ceruloplasmin (Cp) is a multicopper oxidase enzyme involved in the safe handling of oxygen in some metabolic pathways of vertebrates. Discovered in 1948, a blue protein from the a2-globulin fraction of human serum possessing oxidase activity towards aromatic diamines and catechol was purified by Holmberg and Laurell. It was denoted ceruloplasmin, literally meaning "a blue substance from plasma". Specialized copper sites have been recruited during evolution to provide long-range electron transfer reactivity and oxygen binding and activation in proteins destined to cope with oxygen reactivity in different organisms.

Ceruloplasmin belongs to the family of multicopper oxidases which are among the few enzymes able to bind molecular oxygen to perform its complete reduction to water. Ceruloplasmin contains 95% of the copper in serum. Cp found in serum is expressed in the liver, but it is also expressed in the brain, lung, spleen, and testis. This assay has been validated for serum and urine samples. Ceruloplasmins are ancient enzymes that should behave in a similar manner to the colorimetric substrate. This assay should to measure Cp activity from a wide range of sources.

Assay principle
The Ceruloplasmin Activity kit is designed to quantitatively measure Ceruloplasmin activity in diluted serum and urine samples. A human ceruloplasmin standard is provided to generate a standard curve for the assay and all samples should be read off of the standard curve. Samples are diluted in the provided Assay Buffer and added to the wells of a half area clear plate. The reconstituted ceruloplasmin substrate is added and the plate is incubated at 30°C for 60 minutes. The ceruloplasmin in the standards and samples reacts with the substrate to produce a colored product. The optical density is read at 560 nm. Increasing levels of ceruloplasmin in the samples causes an increase in the fuchsia (pink-purple) product.

Ceruloplasmin unit definition
Ceruloplasmin activity is based upon the published determination by G. Curzon and L. Vallet, Biochem. J., 1960, 74:279-287. Due to our optimized reagents and incubation times the optical density generated by 1 U/mL of ceruloplasmin is substantially higher than 0.1 OD.

Related links
Learn more about ELISA kits
Learn more about other immunoassays

EnzChek™ Reverse Transcriptase Assay Kit (Invitrogen™)

The EnzChek® Reverse Transcriptase Assay Kit is a convenient, efficient, and inexpensive assay for measuring reverse transcriptase activity. In less than an hour, samples can be read in a fluorometer or microplate reader with filter sets appropriate for fluorescein (FITC).

See our complete line of Fluorescence Microplate assays.

• Detect as little as 0.02 units of HIV-1 reverse transcriptase
• Large dynamic assay range, detect up to a 50-fold linear range
• Simple to use assay, amenable for automated high-throughput screening applications

The EnzChek® Reverse Transcriptase Assay Kit uses PicoGreen® reagent, which preferentially detects dsDNA or RNA-DNA heteroduplexes over single-stranded nucleic acids or free nucleotides. In this assay, the reverse transcriptase activity in a biological sample generates long RNA-DNA heteroduplexes from a mixture of a long poly(A) template, an oligo-dT primer, and dTTP. The RNA-DNA heteroduplexes formed are then detected by the PicoGreen® reagent.

EnzChek™ Ultra Amylase Assay Kit (Invitrogen™)

The EnzChek® Ultra Amylase Assay Kit provides a solution-based assay featuring the speed, high sensitivity, and convenience required for measuring amylase activity or for screening amylase inhibitors in a high-throughput format. This EnzChek® kit contains a starch derivative—the DQ™ starch substrate—that is labeled with BODIPY® FL dye to such a degree that the fluorescence is quenched. This substrate is efficiently degraded by amylase; digestion relieves the quenching and yields highly fluorescent fragments. The accompanying increase in fluorescence is proportional to amylase activity and can be monitored with a fluorescence microplate reader or fluorometer, using standard fluorescein filters.

EnzChek® Ultra Amylase Assay Kit Specifications:
• Label (Ex/Em): BODIPY® FL conjugate (~502/512 nm)
• Kit contains lyophilized substrate, 10X reaction buffer, substrate solvent, a fluorescent standard, and a detailed protocol
• Sufficient reagents are supplied for 500 assays (using a 100 µL assay volume in a 96-well microplate assay format)


Find Fluorescent Substrates for Other Glycosidases
In addition to the EnzChek® Ultra Amylase Assay Kit, we offer kits and substrates to measure xylanase, lysozyme, β-galactosidase, and more. Review Detecting Glycosidases—Section 10.2 in the Molecular Probes® Handbook for more information on these products.

For Research Use Only. Not for human or animal therapeutic or diagnostic use.

EnzChek™ Phospholipase A2 Assay Kit (Invitrogen™)

This kits takes our stand alone assay for phospholipase A2, PLA2 (A10072) and combines the necessary Ez and lipids to run 2 complete 96 well microplate assays that monitor activity in purified enzyme preparations and cell lysates. The EnzChek Phospholipase A2 Kit provides enough reagents for 2 microplates, using 200 µl volumes in 96 well format to perform continuous fluorometric monitoring of PLA2 . This product offers an alternative to our (B7701), (bis-BODIPY® FL C11-PC) reagent, by providing an PLA2 selective substrate and one that is ratiometric, thereby lowering variations produced by instrumentation and assay conditions. Phospholipase A2 or PLA2 represents a family of enzymes that hydrolyze the sn-2 ester linkage of phospholipids. The activities of these enzymes play important roles in cardiovascular, inflammatory and nervous system disorders, and in cancers. The EnzChek® Phospholipase A2 substrate provides sensitive and continuous rapid real-time monitoring of PLA2 enzyme activities. This unique substrate is selective for PLA2 and can be used either in a intensity or ratiometric based detection mode. In intensity based detection mode the PLA2 activity is monitored by the intensity increase of a single wavelength at approximately 515 nm. In ratiometric analysis, which is based on the distinct fluorescence resonance energy transfer (FRET) emission of this substrate prior to and after cleavage, PLA2 is detected by changes in the emission intensity ratio at 515/575 nm with excitation at ≈ 460 nm. Either detection mode provides a simple method with low background, high sensitivity and high specificity for PLA2.

Active Arf1 Pull-Down and Detection Kit (Thermo Scientific™)

The Thermo Scientific Pierce Active Arf1 Pull-Down and Detection Kit is a complete kit for selective enrichment and detection of GTP-bound Arf1 GTPase through specific protein interaction with the GGA3 protein-binding domain.

The Active Arf1 Pull-Down and Detection Kit includes purified GST-GGA3 protein-binding domain (PBD), glutathione agarose resin, positive and negative controls (GTPγS and GDP, respectively), lysis/binding/wash buffer, anti-Arf1 primary antibody, sample buffer, spin columns and collection tubes. The kit was validated using lysates from MDCK cells, a cell line that is known to have robust Arf1 activity.

Features of the Active Arf1 Pull-Down and Detection Kit:

Highly sensitive and accurate—optimized reagents, specific anti-Arf1 antibody and Western blot procedure ensure accurate controls and semi-quantitative results
Validated—functionally tested for Arf1 detection to ensure quality and performance
Compatible—effective with a variety of cell types from mouse, rat and human sources

Applications:
• Follow activation of Arf1 GTPase during cell differentiation, migration, division and cytoskeletal rearrangement
• Study the activation of Arf1 during the assembly of coat proteins onto budding vesicles or trans-golgi network and endosomes
• Monitor Arf1 activity after stimulation with growth factors
• Monitor Arf1 activity after small molecule inhibitor treatment

The Active Arf1 Pull-Down and Detection Kit was validated for function and specificity of the active Arf1 enrichment method using cell lysates treated with GTPγS to activate endogenous Arf1 and compared to lysates treated with GDP to inactivate the small GTPase. GTPγS treatment traps Arf1 in the GTP-bound form (active), resulting in a strong signal when endogenous Arf1 is present. GDP treatment pushes Arf1 into the GDP-bound state (inactive), resulting in minimal or no signal, regardless of Arf1 protein levels. The kit is optimized for Western blot detection using an HRP-conjugated secondary antibody (Goat Anti-rabbit IgG, Part No. 31460) and Thermo Scientific SuperSignal West Pico Chemiluminescent Substrate (Part No. 34080). The kit contains sufficient components for 30 pull-down assays.

Arf1 Background:
ADP ribosylation factor proteins 1-6 (Arfs) are members of the Ras family of small GTPases. Although structurally similar, the cellular roles of Arf1-6 are different from the other Arf family members; their endogenous roles are not ADP ribosylation, but rather regulation of heterotrimeric G proteins. The Arf proteins can be divided into three classes: Class I—Arf 1-3; Class II—Arf 4,5; Class III—Arf6. Class I and II Arfs are associated with trans-Golgi network (TGN) and are involved in recruiting effector proteins to the Golgi membrane and forming vesicles. Unlike other GTPases, Arf GTPases are modified by myristoylation at the amino-terminus to allow insertion into the membrane. The Class III protein Arf6 is associated with the plasma membrane and is involved in vesicle formation at the plasma membrane, vesicle recycling and remodeling of the actin cytoskeleton.

Although the Arf GTPases are expressed in all cells, Arf1 is the most abundant, active and best-characterized. Arf1 recruits its effectors, including coatomer and clathrin adaptor complex (AP), to the Golgi for vesicle formation and budding. After recruitment, Arf1 maintains the coat proteins on the membrane until the vesicle is formed. Arf1 then interacts with its effector resulting in the release of Arf1 from the membrane and vesicle budding. The golgi-localized γ-ear-containing Arf (GGA) effector binding proteins contain an amino-terminal VHS domain, a GGA homology domain (GGAH), a proline-rich linker region and a carboxy-terminal γ-ear adaptin homology domain (AGEH). The VHS domain interacts with cytoplasmic domains for receptor sorting, the GGAH domain binds activated Arf, the proline-rich region interacts with clathrin and the AGEH domain interacts with cytosolic proteins. Through mutational studies, the GGAH domain has been shown to be sufficient to bind GTP-bound Arf, and Arf1 binds all three GGA effector proteins. The association of the GGA proteins with the TGN and with the plasma membrane is regulated by the Arf.

More Product Data
Measure activation of small GTPases via their specific downstream effectors

Active Rho Pull-Down and Detection Kit (Thermo Scientific™)

The Thermo Scientific Pierce Active Rho Pull-Down and Detection Kit enables selective enrichment and detection of GTP-bound Rho GTPase through specific protein interaction with the Rhotekin protein-binding domain.

The Active Rho Pull-Down and Detection Kit includes purified GST-Rhotekin Rho-binding domain (RBD), glutathione agarose resin, positive and negative controls (GTPγS and GDP, respectively), lysis/binding/washing buffer, anti-Rho antibody, secondary antibody, sample buffer, spin columns and collection tubes. The kit was validated using lysates from NIH 3T3 cells, a cell line known to have robust Rho activity.

Features of the Active Rho Pull-Down and Detection Kit:

Highly sensitive and accurate—optimized reagents, specific pan anti-Rho antibody and Western blot procedure ensure accurate controls and semi-quantitative results
Validated—functionally tested for Rho detection to ensure quality and performance
Compatible—effective with a variety of cell types from mouse, rat and human sources

Applications:
• Follow activation of Rho GTPase during cell differentiation, migration, division and cytoskeletal rearrangement
• Study the activation of Rho during stress fiber formation
• Monitor Rho activity after stimulation with growth factors
• Screen small-molecule inhibitors for their effects on Rho activity

The Active Rho Pull-Down and Detection Kit was validated for function and specificity for active Rho using cell lysates treated with GTPγS to activate endogenous Rho and compared to GDP-treated lysates to inactivate the small GTPase. GTPγS treatment traps Rho in the GTP-bound form (active), resulting in a strong signal when endogenous Rho is present. GDP treatment pushes Rho into the GDP-bound state (inactive), resulting in little to no signal, regardless of Rho protein levels. This kit is optimized for Western blot detection using an HRP-conjugated secondary antibody (included) and Thermo Scientific SuperSignal West Pico Chemiluminescent Substrate (available separately, Part No. 34080). The kit contains sufficient components for 30 pull-down assays.

Kit components can also be used for immunofluorescent staining. Neuronal NS-1 cells were stimulated with NGF to study the spatial distribution of active Rho using the GST-RBD protein and anti-Rho antibody supplied in the kit.

Rho Background:
Rho family GTPases serve many cellular functions, including cell signaling, transcriptional regulation and organization of the actin cytoskeleton. This family of GTPases comprise Rho (RhoA, RhoB, and RhoC), Rac (Rac1, Rac2, Rac3, and RhoG), Cdc42 (Cdc42 and G25K), Rnd (Rnd1, Rnd2, and RhoE/Rnd3), RhoBTB family and the Miro family. These GTPases enable signal transduction from the plasma membrane to the cytosol through GPCR, tyrosine kinase, cytokine and adhesion receptors. Attachment to the plasma membrane is accomplished through geranylgeranyl lipid modifications at the carboxy-terminus of the protein. Signal transduction through Rho GTPases results in the reorganization of actin into stress fibers and the formation of focal adhesions. RhoA is localized to the cytosol and plasma membrane, while Rho B is localized to the plasma membrane and membrane vesicles. Like RhoA, RhoC is cytosolic, although it localizes to perinuclear regions.

The Rho GTPases interact with GEF, GAP, GDI and effector proteins for signal transduction. There are over 30 mammalian GEFs for the Rho GTPases, and each GEF contains a DBl homology domain for the nucleotide exchange reaction, a pleckstrin homology domain and additional specific domains for protein-protein interactions. The Rho Gap proteins accelerate the hydrolysis of GTP, and the GDI proteins enable translocation of the Rho GTPases between the cytoplasm and membrane and inhibit the GDP/GTP exchange by Rho GEFs. The GEF and GDI interaction with Rho and the Gα subunit is necessary for signal transduction through GPCRs. Some of the effector proteins include p160 Rho kinase, a serine/threonine kinase involved in stress fiber formation, p140mDia, which triggers reorganization of the actin cytoskeleton, and Rhotekin, a serine/threonine kinase scaffold protein that mediates signaling to activate NF-κB. The Rho family GTPases can work agonistically during cell signaling and and antagonistically during differentiation.

More Product Data
Measure activation of small GTPases via their specific downstream effectors
Detection and localization of active GTPases in neuronal cell differentiation

LanthaScreen™ TR-FRET BACE1 Assay Kit

BACE1 (beta-secretase) is a key enzyme involved in the production of amyloid beta-peptides found in extracellular amyloid plaques of Alzheimer’s disease (AD). In some cases, early-onset familial AD can be attributed to a "Swedish"mutation in the amyloid precursor protein (APP), which dramatically enhances the cleavage of this protein by BACE1. This and other genetic and pathological evidence has led to therapeutic approaches that focus on the inhibition of BACE1 and other APP-cleaving enzymes, such as gamma-secretase.

Invitrogen’s LanthaScreen® TR-FRET BACE1 assay provides sensitive high-throughput screening for potential inhibitors of beta-secretase. The kit uses a terbium (Tb)-labeled anti-biotin antibody and a fluorescein-labeled BACE1-biotin substrate in a homogeneous TR-FRET assay format (Figure 1).



Contents and Storage:

The LanthaScreen® TR-FRET BACE1 Assay Kit contains BACE1 protein, fluorescently labeled BACE1 substrate, Tb-labeled anti-biotin antibody, and buffers. Store components as indicated in the assay protocol (-80°C, -20°C, or +4°C).