Shop All Other Enzyme Assay Kits

EnzChek™ Gelatinase/Collagenase Assay Kit, 250-2,000 assays (Invitrogen™)

The EnzChek Gelatinase/Collagenase Assay Kit provides a sensitive, convenient and fast fluorometric method for measuring gelatinase or collagenase activity in purified enzyme systems, cell/tissue lysates or for screening inhibitors in a high-throughput format. The substrate in the EnzChek kit is our fluorescein-labeled DQ gelatin conjugate that is highly labeled so that the fluorescence signal is quenched until enzymatic digestion yields highly fluorescent fragments. This substrate is also available separate from the kit (D-12054).

Histone Demethylase Fluorescent Activity Kit (Invitrogen™)

The Histone Demethylase Activity research-use-only kit is a fluorescent activity assay designed for the quantification and detection of histone demethylase activity of lysine-specific histone demethylase 1 (LSD1)-and Jumonji-type demethylases.

This kit includes black 96-well plate(s), LSD1/JMJD2A assay buffers, formaldehyde standard, and other components to perform the assay. This kit does not contain demethylase enzyme samples. A source of LSD1-type or Jumonji-type demethylase, along with any cofactors, enzyme substrates, inhibitors, and/or activators need to be supplied by the user. A fluorescence 96-well microplate reader capable of reading fluorescent emission at 510 nm, with excitation at 450 nm, is required for use of this kit.

Performance characteristics
• Assay type: fluorescent activity kit
• Sample types: lysine-specific histone demethylase 1 (LSD1) and Jumonji-type demethylases
• Standard curve range: 0.128 uM–0.64 uM for LSD1, 2.5 uM-10uM for JMJD2A
• Reactivity: human

Background
Histone Demethylase (HDM) catalyzes the site-specific demethylation of methyl-lysine residues in histones to dynamically regulate chromatin structure, gene expression, and potentially other genomic functions. Lysine-specific HDMs were first discovered in 2004 and are currently among the most actively studied formaldehyde-producing enzymes. At present, there are two known classes of HDMs: the flavin adenine dinucleotide (FAD)-dependent Lysine Specific Demethylase 1 (LSD1) family and the Fe(II)-dependent Jumonji C (JmjC) family. Although the LSD1 and JmjC HDMs employ different cofactors and catalytic mechanisms, both produce formaldehyde as a byproduct of the demethylation reaction.

Despite their biological importance, HDMs have proven difficult to quantitatively assay owing to their relatively low turnover numbers, hindering understanding of their kinetic properties, substrate specificities, and reaction mechanisms. This assay has been validated for lysine-specific histone demethylase 1 (LSD1)-and Jumonji-type demethylases. For HDM samples in cell lysates, we include a specially formulated Cell Lysis Buffer, that has been shown not to interfere with formaldehyde detection. Cell lysis buffers containing SDS and Triton X-100 inhibit the formaldehyde signal reaction and should not be used.

Assay principle
The Histone Demethylase Activity kit is to quantitatively measure the enzymatic activity of formaldehyde-producing enzymes such as histone demethylases. The kit is unique in that the product of these enzymatic demethylation reactions, formaldehyde, is quantitated directly by a fluorescent product. No separation or washing is required. The kit has been validated for both LSD1 and JMJD2A histone demethylases (HDMs).

The kit provides optimized buffers for the HDMs LSD1 and JMJD2A, a stable formaldehyde standard, the Formaldehyde Detection Reagent (FDR), and two 96-well plates for detecting the generated fluorescent signal. The kit allows any enzymatic reaction generating formaldehyde to be measured. The end user will have to provide the demethylase system and any cofactors necessary for activity, along with any test inhibitors or activators. The kit allows end users to produce HDM activity in many in vivo and in vitro systems and then determine the activity by measuring formaldehyde generation. For in vitro studies, the HDM reaction should be carried out in our supplied buffers using optimized reaction conditions for the demethylation.

Following the formaldehyde generating reaction, the reaction can be stopped by addition of a suitable inhibitor. The FDR is then added to all the wells. If calibration to formaldehyde is needed (for cross lab comparisons) then a formaldehyde standard curve generated from the supplied standard should be run. After a short incubation at 37°C for 30 minutes, the fluorescent product is read at 510 nm in a fluorescent plate reader with excitation at 450 nm.

Related links
Learn more about ELISA kits
Learn more about other immunoassays

Superoxide Dismutase (SOD) Colorimetric Activity Kit (Invitrogen™)

The Superoxide Dismutase Activity research-use-only kit is a colorimetric activity assay designed for the quantification and detection of superoxide dismutase activity in serum, plasma, cells, tissues and erythrocyte lysates.

This complete, ready-to-use kit includes clear 96-well plate(s), superoxide dismutase standard (1 Unit/vial), superoxide dismutase substrate, and other components to perform the assay. A 96-well microplate reader capable of reading optical density at 450 nm is required for use of this kit.

Performance characteristics
• Assay type: colorimetric activity kit
• Sample types: serum, plasma, cells, tissues, and erythrocyte lysates
• Sensitivity: 0.044 U/mL
• Standard curve range: 0.06 U/mL–4 U/mL
• Reactivity: species independent

Background
Short-lived and highly reactive oxygen species (ROS) such as superoxide, hydroxyl radical, and hydrogen peroxide are continuously generated in vivo. In the resting state, the balance between antioxidants and oxidants is sufficient to prevent the disruption of normal physiologic functions; however, either increases in oxidants or decreases in antioxidants can disrupt this balance giving rise to elevated levels of reactive oxygen species (ROS). The cellular levels of ROS are controlled by antioxidant enzymes and small molecule antioxidants. The major antioxidant enzymes, superoxide dismutases (SODs), including copper-zinc superoxide dismutase (Cu/ZnSOD, SOD1), manganese superoxide dismutase (MnSOD, SOD2) and extracellular superoxide dismutase (EC-SOD, SOD3), all play critical roles in scavenging superoxide .

Decreased SOD activity results in elevated level of superoxide which in turn leads to decreased NO but increased peroxynitrite concentrations. The major intracellular SOD is a 32-kD copper and zinc containing homodimer (Cu/Zn SOD). The mitochondrial SOD (MnSOD) is a manganese-containing 93-kD homotetramer that is synthesized in the cytoplasm and translocated to the inner matrix of mitochondria. This assay has been validated for serum and urine samples. Superoxide dismutases are ancient enzymes that should behave in a similar manner to the colorimetric substrate. This assay should to measure SOD activity from a wide range of sources.

Assay principle
The Superoxide Dismutase Activity kit is designed to quantitatively measure SOD activity in a variety of samples. The assay measures all types of SOD activity, including Cu/Zn, Mn, and FeSOD types. A bovine erythrocyte SOD standard is provided to generate a standard curve for the assay and all samples should be read off of the standard curve. Samples are diluted in our specially colored sample diluent and added to the wells. The substrate is added followed by Xanthine Oxidase Reagent and incubated at room temperature for 20 minutes. The xanthine oxidase generates superoxide in the presence of oxygen, which converts a colorless substrate in the detection reagent into a yellow colored product. The colored product is read at 450 nm. Increasing levels of SOD in the samples causes a decrease in superoxide concentration and a reduction in yellow product.

SOD unit definition
One unit of SOD is defined as the amount of enzyme causing half the maximum inhibition of the reduction of 1.5 mM Nitro blue tetrazolium in the presence of riboflavin at 25°C and pH 7.8.

Related links
Learn more about ELISA kits
Learn more about other immunoassays