Shop All Apoptosis Kits

eBioscience™ Annexin V Apoptosis Detection Kit PE Invitrogen™

Annexins are a family of calcium-dependent phospholipid-binding proteins that preferentially bind phosphatidylserine (PS). Under normal physiologic conditions, PS is predominantly located in the inner leaflet of the plasma membrane. Upon initiation of apoptosis, PS loses its asymmetric distribution across the phospholipid bilayer and is translocated to the extracellular membrane leaflet marking cells as targets of phagocytosis. Once on the outer surface of the membrane, PS can be detected by fluorescently labeled Annexin V in a calcium-dependent manner.

In early-stage apoptosis, the plasma membrane excludes viability dyes such as propidium iodide (PI), 7-AAD, or Fixable Viability Dyes such as eFluor™ 660 or eFluor™ 780. These cells will stain with Annexin V but not a viability dye, thus distinguishing cells in early apoptosis. However, in late stage apoptosis, the cell membrane loses integrity thereby allowing Annexin V to also access PS in the interior of the cell. A viability dye can be used to resolve these late-stage apoptotic and necrotic cells (Annexin V, viability dye-positive) from the early-stage apoptotic cells (Annexin V positive, viability dye-negative).

Note: Fixable Viability Dye eFluor™ 450 is not recommended for use with Annexin V Apoptosis Detection Kits.

Reported Application
Flow Cytometric Analysis

Click-iT™ TUNEL Colorimetric IHC Detection Kit Invitrogen™

The Click-iT™ TUNEL Colorimetric IHC Detection Kit is used to identify apoptotic cells in tissue and cultured cell samples through the use of a small, highly specific labeling moiety and streptavidin-peroxidase conjugation. After incorporation of the labeling moiety into sites of DNA fragmentation, detection is achieved through a catalyzed 'click' reaction that adds a biotin group at these sites. The subsequent addition of a streptavidin-peroxidase and peroxidase substrate results in a dark brown signal that can be detected with light microscopy and stored for future analysis.

Find more tools for image-based detection of apoptotic cells >

• Optimized for the detection of apoptotic cells in either tissue or cell samples
• Improved colorimetric TUNEL assay—better label incorporation due to small reactive moiety
• Increased sensitivity—specific label incorporation results in lower background and brighter signal
• Content-rich results—cell morphology, cellular environment, and apoptotic signal are clearly visible
• Flexibility—the assay can be configured for 50 independent TUNEL apoptosis tests

The later stages of apoptosis are characterized by changes in nuclear morphology, chromatin condensation, nuclear envelope degradation, and DNA fragmentation. Terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assays are based on the incorporation of modified dUTPs by terminal deoxynucleotidyl transferase (TdT) at the 3’-OH ends of fragmented DNA. Colorimetric TUNEL assays utilize dUTPs conjugated with a biotin moiety, followed by the addition of a streptavidin-peroxidase conjugate and peroxidase substrate, resulting in a dark brown apoptotic signal. However, colorimetric TUNEL assays are prone to high background, which reduces the sensitivity and specificity of the signal.

The Click-iT TUNEL Colorimetric IHC Detection Kit was developed to address these issues by utilizing a dUTP modified with an alkyne group (a small bio-orthogonal functional group) that enables the nucleotide to be more readily incorporated by TdT. After incorporation, a highly specific click reaction covalently links biotin azide and the alkyne group. Streptavidin-peroxidase (horseradish peroxidase) followed by peroxidase substrate (DAB) are added, allowing colorimetric detection of apoptotic cells. The high degree of labeling specificity inherent in the click technology results in low background and improved detection of apoptotic cells.

The Click-iT TUNEL Colorimetric IHC Detection Kit has been optimized and contains all of the reagents needed for detection of apoptotic cells from either tissue or cell samples. The reagents supplied in this kit can be used to test 50 samples and configured to test from one to 50 samples at a time.

eBioscience™ Annexin V Apoptosis Detection Set PE-Cyanine7 Invitrogen™

Annexins are a family of calcium-dependent phospholipid-binding proteins that preferentially bind phosphatidylserine (PS) in all mammalian species. Under normal physiologic conditions, PS is predominantly located in the inner leaflet of the plasma membrane. Upon initiation of apoptosis, PS loses its asymmetric distribution across the phospholipid bilayer and is translocated to the extracellular membrane leaflet marking cells as targets of phagocytosis. Once on the outer surface of the membrane, PS can be detected by fluorescently labeled Annexin V in a calcium-dependent manner.

In early-stage apoptosis, the plasma membrane excludes viability dyes such as propidium iodide (PI), 7-AAD, or Fixable Viability Dyes such as eFluor™ 660 or eFluor™ 780. These cells will stain with Annexin V but not a viability dye, thus distinguishing cells in early apoptosis. However, in late stage apoptosis, the cell membrane loses integrity thereby allowing Annexin V to also access PS in the interior of the cell. A viability dye can be used to resolve these late-stage apoptotic and necrotic cells (Annexin V, viability dye-positive) from the early-stage apoptotic cells (Annexin V positive, viability dye-negative).

Due to the emission spectrum of PE-Cyanine7, the Annexin V Apoptosis Detection Set PE-Cyanine7 is not compatible with propidium iodide and 7-AAD. It is recommended to substitute a Fixable Viability Dye such as eFluor™ 660 or eFluor™ 780 in their place.

Not included:
Fixable Viability Dye eFluor™ 660 (cat. 65-0864)
Fixable Viability Dye eFluor™ 780 (cat. 65-0865)

Note: Fixable Viability Dye eFluor™ 450 is not recommended for use with Annexin V Apoptosis Detection Kits.

Reactivity/Species
Human, Mouse, Rat

Reported Application
Flow Cytometric Analysis

Pacific Blue™ Annexin V/SYTOX™ AADvanced™ Apoptosis Kit, for flow cytometry Invitrogen™

This product detects the externalization of phosphatidylserine in apoptotic cells using recombinant annexin V conjugated to violet-fluorescent Pacific Blue™ dye and dead cells using SYTOX™ AADvanced™ stain. After staining a cell population with Pacific Blue™, annexin V and SYTOX™ AADvanced™, apoptotic cells show violet fluorescence, dead cells show red fluorescence, and live cells show little or no fluorescence. These populations are easily distinguished by a flow cytometer with the 405 nm and 488 nm lines for excitation. There is very little spectral overlap between the two dyes, therefore very little compensation is needed. Each kit contains sufficient reagents for approximately 50 flow cytometry tests.

View a selection guide for all apoptosis assays for flow cytometry.

Apo-BrdU Apoptosis Detection Kit Invitrogen™

The APO-BRDU™ Kit is a 2-color staining method for labeling DNA breaks and total cellular DNA to detect apoptotic cells by flow cytometry. The kit contains the instructions and reagents required for measuring apoptosis in cells, including positive and negative control cells for assessing reagent performance; washing, reaction and rinsing buffers for processing individual steps in the assay; terminal deoxynucleotidyl transferase enzyme (TdT), bromodeoxyuridine triphosphate (Br-dUTP), and fluorescein labeled anti-BrdU antibody for labeling DNA breaks and propidium iodide/RNase A solution for counterstaining the total DNA.

One of the most easily measured features of apoptotic cells is the break-up of the genomic DNA by cellular nucleases. These DNA fragments can be extracted from apoptotic cells and result in the appearance of DNA laddering when the DNA is analyzed by agarose gel electrophoresis. The DNA of non-apoptotic cells that remains largely intact does not display this laddering on agarose gels during electrophoresis. The large number of DNA fragments appearing in apoptotic cells results in a multitude of 3'-hydroxyl termini in the DNA. This property can be used to identify apoptotic cells by labeling the 3'-hydroxyl ends with bromolated deoxyuridine triphosphate nucleotides (Br-dUTP). The enzyme terminal deoxynucleotidyl transferase (TdT) catalyzes a template independent addition of deoxyribonucleoside triphosphates to the 3'-hydroxyl ends of double- or single-stranded DNA with either blunt, recessed or overhanging ends. A substantial number of these sites are available in apoptotic cells providing the basis for the method utilized in the APO-BRDU™ Kit. Recent evidence has demonstrated that Br-dUTP is more readily incorporated into the genome of apoptotic cells than are the deoxynucleotide triphosphates complexed to larger ligands like fluorescein, biotin or digoxigenin. This greater incorporation gives rise to a brighter flow cytometry signal when the Br-dUTP sites are identified by a fluorescein labeled anti-BrdU monoclonal antibody. Non-apoptotic cells do not incorporate significant amounts of the Br-dUTP due to the lack of exposed 3'-hydroxyl DNA ends.

Sufficient reagents are provided to process a total of 60 cell suspensions including 5 mL positive and 5 mL negative control cell suspensions of approximately 1x106 cells per mL in 70% (v/v) ethanol.

Reported Application
Immunocytochemistry, Flow Cytometric Analysis

ApoDETECT Annexin V-FITC Kit Invitrogen™

The ApoDETECT Annexin V-FITC Kit provides all the reagents needed to detect the apoptotic cells. Annexin V is a Ca2+-dependent phospholipid binding protein. This protein can bind to a variety of phospholipids, but it has the highest affinity for phosphatidylserine (PS). The ApoDETECT Annexin V-FITC Kit binds to negatively charged phospholipid surfaces in a Ca2+-dependent manner. It also prevents the formation of the prothrombinase complex, thereby inhibiting formation of thrombin (anticoagulant activity). The ApoDETECT Annexin V-FITC Kit can be used to detect apoptotic cells by flow cytometry or immunofluorescent cytology.

Kit Attributes:

Applications: Validated application for ApoDETECT Annexin V-FITC Kit is detecting apoptotic cells by flow cytometry or immunofluorescent cytology.
Format: Vial(s)
Detection Method: Fluorescence microscopy
Product Size: One kit

In normal cells phosphatidylserine (PS) is located on the inner leaflet of the plasma membrane. During the early stages of apoptosis, PS is translocated to the outer layer and is exposed on the external surface of the cell. This early event in apoptosis can be detected by using a sensitive method in which to detect PS exposure. Translocation of PS to the external surface of the plasma membrane is not a unique property of apoptotic cells, as this phenomenon also occurs during cell necrosis. However, during apoptosis, the cell membrane remains intact; whereas, during necrosis, the cell becomes leaky and loses its integrity. Therefore, it is necessary to assess membrane integrity together with PS translocation.

Annexin V is a Ca2+-dependent phospholipid binding protein. This protein can bind to a variety of phospholipids, but it has the highest affinity for phosphatidylserine (PS). Based on its affinity for PS, Annexin V can be utilized as a sensitive probe for cell surface exposure of PS. To use the Annexin V protein as a probe for apoptotic cells, the protein has been labeled with fluorescein isothiocyanate (FITC). In this form, the protein can be used directly for quantification of apoptotic cells. The measurement of Annexin V binding when performed simultaneously with a dye exclusion test (such as propidium iodide) can be used to effectively discriminate between apoptotic and necrotic cells.

eBioscience™ Annexin V Apoptosis Detection Kit FITC Invitrogen™

Annexins are a family of calcium-dependent phospholipid-binding proteins that preferentially bind phosphatidylserine (PS). Under normal physiologic conditions, PS is predominantly located in the inner leaflet of the plasma membrane. Upon initiation of apoptosis, PS loses its asymmetric distribution across the phospholipid bilayer and is translocated to the extracellular membrane leaflet marking cells as targets of phagocytosis. Once on the outer surface of the membrane, PS can be detected by fluorescently labeled Annexin V in a calcium-dependent manner.

In early-stage apoptosis, the plasma membrane excludes viability dyes such as propidium iodide (PI), 7-AAD, or Fixable Viability Dyes such as eFluor™ 660 or eFluor™ 780. These cells will stain with Annexin V but not a viability dye, thus distinguishing cells in early apoptosis. However, in late stage apoptosis, the cell membrane loses integrity thereby allowing Annexin V to also access PS in the interior of the cell. A viability dye can be used to resolve these late-stage apoptotic and necrotic cells (Annexin V, viability dye-positive) from the early-stage apoptotic cells (Annexin V positive, viability dye-negative).

Note: Fixable Viability Dye eFluor™ 450 is not recommended for use with Annexin V Apoptosis Detection Kits.

Reported Application
Flow Cytometric Analysis

eBioscience™ Annexin V Apoptosis Detection Kit eFluor™ 450 Invitrogen™

Annexins are a family of calcium-dependent phospholipid-binding proteins that preferentially bind phosphatidylserine (PS). Under normal physiologic conditions, PS is predominantly located in the inner leaflet of the plasma membrane. Upon initiation of apoptosis, PS loses its asymmetric distribution across the phospholipid bilayer and is translocated to the extracellular membrane leaflet marking cells as targets of phagocytosis. Once on the outer surface of the membrane, PS can be detected by fluorescently labeled Annexin V in a calcium-dependent manner.

In early-stage apoptosis, the plasma membrane excludes viability dyes such as propidium iodide (PI), 7-AAD, or Fixable Viability Dyes such as eFluor™ 660 or eFluor™ 780. These cells will stain with Annexin V but not a viability dye, thus distinguishing cells in early apoptosis. However, in late stage apoptosis, the cell membrane loses integrity thereby allowing Annexin V to also access PS in the interior of the cell. A viability dye can be used to resolve these late-stage apoptotic and necrotic cells (Annexin V, viability dye-positive) from the early-stage apoptotic cells (Annexin V positive, viability dye-negative).

Reported Application
Flow Cytometric Analysis

eBioscience™ Annexin V Apoptosis Detection Kit PerCP-eFluor™ 710 Invitrogen™

Annexins are a family of calcium-dependent phospholipid-binding proteins that preferentially bind phosphatidylserine (PS) in all mammalian species. Under normal physiologic conditions, PS is predominantly located in the inner leaflet of the plasma membrane. Upon initiation of apoptosis, PS loses its asymmetric distribution across the phospholipid bilayer and is translocated to the extracellular membrane leaflet marking cells as targets of phagocytosis. Once on the outer surface of the membrane, PS can be detected by fluorescently labeled Annexin V in a calcium-dependent manner.

In early-stage apoptosis, the plasma membrane excludes viability dyes such as propidium iodide (PI), 7-AAD, or Fixable Viability Dyes such as eFluor™ 660 or eFluor™ 780. These cells will stain with Annexin V but not a viability dye, thus distinguishing cells in early apoptosis. However, in late stage apoptosis, the cell membrane loses integrity thereby allowing Annexin V to also access PS in the interior of the cell. A viability dye can be used to resolve these late-stage apoptotic and necrotic cells (Annexin V, viability dye-positive) from the early-stage apoptotic cells (Annexin V positive, viability dye-negative).

Due to the emission spectrum of PerCP-eFluor™ 710, the Annexin V Apoptosis Detection Kit PerCP-eFluor™ 710 is not compatible with propidium iodide and 7-AAD. It is recommended to substitute a Fixable Viability Dye such as eFluor™ 660 or eFluor™ 780 in their place.

Not included:
Fixable Viability Dye eFluor™ 660 (cat. 65-0864)
Fixable Viability Dye eFluor™ 780 (cat. 65-0865)

Note: Fixable Viability Dye eFluor™ 450 is not recommended for use with Annexin V Apoptosis Detection Kits.

Reported Application
Flow Cytometric Analysis

Image-iT™ LIVE Red Poly Caspases Detection Kit, for microscopy Invitrogen™

The Image-iT™ LIVE Red Poly Caspases Detection Kit employs a novel approach to detect active caspases that is based on a fluorescent inhibitor of caspases (FLICA™) methodology, essentially an affinity label. The reagent associates a fluoromethyl ketone (FMK) moiety, which can react covalently with a cysteine, with a caspase-specific amine acid sequence. For poly caspases, this recognition sequence is valine-alanine-aspartic acid (VAD). A sulforhodamine group (SR) is attached as a reporter. The FLICA reagent is thought to interact with the enzymatic reactive center of an activated caspase via the recognition sequence, and then to attach covalently through the FMK moiety. The FLICA inhibitor is cell permeant and noncytotoxic. Unbound FLICA molecules diffuse out of the cell and are washed away; the remaining red-fluorescent signal is a direct measure of the amount of active caspase that was present at the time the inhibitor was added.

Violet Ratiometric Membrane Asymmetry Probe/Dead Cell Apoptosis Kit, for flow cytometry Invitrogen™

The Violet Ratiometric Membrane Asymmetry Probe/Dead Cell Apoptosis Kit provides a simple and fast method for the detection of apoptosis with dead cell discrimination by flow cytometry. The Violet Ratiometric Membrane Asymmetry Probe, 4'-N,N-diethylamino-6-(N,N,N-dodecyl-methylamino-sulfopropyl)-methyl-3-hydroxyflavone (F2N12S), is a novel violet excitable dye for the detection of membrane asymmetry changes during apoptosis. The dye exhibits an excited-state intramolecular proton transfer (ESIPT) reaction resulting in a dual fluorescence with two emission bands corresponding to 530 nm and 585 nm, producing a two-color ratiometric response to variations in surface charge. Ratiometric probes have several advantages over traditional fluorochrome labeled reagents. The ratiometric probe is a self-calibrating absolute parameter of apoptotic transformation, which is independent of probe concentration, cell size, and instrument variation, such as fluctuations of laser intensity or sensitivity of the detectors. Given that apoptosis modifies the surface charge of the outer leaflet of the plasma membrane the violet membrane asymmetry probe F2N12S can monitor changes in membrane asymmetry that occur during apoptosis through a change in the relative intensity of the two emission bands of the dye. The F2N12S probe is combined with SYTOX(R) AADvanced dead cell stain, which is capable of passing through the cell membrane only in late apoptotic or necrotic cells allowing discrimination form early apoptotic cells. Samples can be analyzed after a 5 minute incubation at room temperature and does not require special buffers or wash steps. This kit can be paired with other reagents such as MitoProbe™ DiIC1(5) or annexin V for multiparametric analysis of apoptosis and viability. This reagent kit allow researchers to maximaize the utility of their instruments by utilizing the violet laser Each kit contains sufficient reagents for ~100 flow cytometry tests.

View a selection guide for all apoptosis assays for flow cytometry.

eBioscience™ Annexin V-Biotin Apoptosis Detection Kit Invitrogen™

Annexins are a family of calcium-dependent phospholipid-binding proteins, which bind to phosphatidylserine (PS) to identify apoptotic cells. In healthy cells, PS is predominantly located along the cytosolic side of the plasma membrane. Upon initiation of apoptosis, PS loses its asymmetric distribution in the phospholipid bilayer and translocates to the extracellular membrane, which is detectable with fluorescently labeled Annexin V. In early stages of apoptosis, the plasma membrane excludes viability dyes such as propidium iodide (PI) and 7-AAD, therefore cells which display only Annexin V staining (PI/7-AAD negative) are in early stages of apoptosis. During late-stage apoptosis, loss of cell membrane integrity allows Annexin V binding to cytosolic PS, as well as cell uptake of PI and 7-AAD. Annexin V staining, paired with 7-AAD or PI is widely used to identify apoptotic stages by flow cytometry.

Host
E.coli

Conjugate
Biotin

Purity
> 98% pure

Molecular Mass
35.8 kDa

Reported Application
Flow Cytometric Analysis

Image-iT™ LIVE Green Poly Caspases Detection Kit, for microscopy Invitrogen™

The Image-iT™ LIVE Green Poly Caspases Detection Kit employs a novel approach to detect active caspases that is based on a fluorescent inhibitor of caspases (FLICA™) methodology, essentially an affinity label. The reagent associates a fluoromethyl ketone (FMK) moiety, which can react covalently with a cysteine, with a caspase-specific amine acid sequence. For poly caspases, this recognition sequence is valine-alanine-aspartic acid (VAD). A fluorescein group is attached as a reporter. The FLICA reagent is thought to interact with the enzymatic reactive center of an activated caspase via the recognition sequence, and then to attach covalently through the FMK moiety. The FLICA inhibitor is cell permeant and noncytotoxic. Unbound FLICA molecules diffuse out of the cell and are washed away; the remaining green-fluorescent signal is a direct measure of the amount of active caspase that was present at the time the inhibitor was added.

eBioscience™ Annexin V Apoptosis Detection Kit APC Invitrogen™

Annexins are a family of calcium-dependent phospholipid-binding proteins that preferentially bind phosphatidylserine (PS). Under normal physiologic conditions, PS is predominantly located in the inner leaflet of the plasma membrane. Upon initiation of apoptosis, PS loses its asymmetric distribution across the phospholipid bilayer and is translocated to the extracellular membrane leaflet marking cells as targets of phagocytosis. Once on the outer surface of the membrane, PS can be detected by fluorescently labeled Annexin V in a calcium-dependent manner.

In early-stage apoptosis, the plasma membrane excludes viability dyes such as propidium iodide (PI), 7-AAD, or Fixable Viability Dyes such as eFluor™ 660 or eFluor™ 780. These cells will stain with Annexin V but not a viability dye, thus distinguishing cells in early apoptosis. However, in late stage apoptosis, the cell membrane loses integrity thereby allowing Annexin V to also access PS in the interior of the cell. A viability dye can be used to resolve these late-stage apoptotic and necrotic cells (Annexin V, viability dye-positive) from the early-stage apoptotic cells (Annexin V positive, viability dye-negative).

Note: Fixable Viability Dye eFluor™ 450 is not recommended for use with Annexin V Apoptosis Detection Kits.

Reported Application
Flow Cytometric Analysis

EnzChek™ Caspase-3 Assay Kit #1, Z-DEVD-AMC substrate Invitrogen™

The EnzChek Caspase-3 Assay Kit #1 allows detection of apoptosis by providing a simple and reliable method for assaying caspase-3 activity. The basis for the assay is the aminomethylcoumarin (AMC)-derived substrate Z-DEVD-AMC. This substrate, which is weakly fluorescent in the UV range (excitation/emission maxima ~330/390 nm), yields a bright, blue-fluorescent product (excitation/emission maxima ~342/441 nm) upon proteolytic cleavage. The kit can be used to continuously measure the activity of caspase-3 and closely related proteases in cell extracts and purified enzyme preparations, using a fluorometer or fluorescence microplate reader.
Results per page
    spinner