Shop All Cellular Structure Probes

Texas Red™-X Phalloidin (Invitrogen™)

Texas Red®-X phalloidin is a high-affinity F-actin probe conjugated to our bright, photostable, red fluorescent Texas Red®-X dye.

Selectively stains F-actin
Outstanding fluorescence performance
Excitation/Emission: 591/608 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while Texas Red®-X provides red fluorescence with superior brightness. Demonstrating very little nonspecific staining, Texas Red®-X phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Texas Red®-X phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Texas Red®-X phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and Alexa Fluor® conjugates including secondary antibodies.

For research use only. Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

Alexa Fluor™ 660 Phalloidin (Invitrogen™)

Alexa Fluor® 660 phalloidin is a high-affinity F-actin probe conjugated to our bright, photostable, near-infrared fluorescent Alexa Fluor® 660 dye.

Selectively stains F-actin
Outstanding fluorescence performance
Excitation/Emission: 663/690 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while Alexa Fluor® 660 provides near-infrared fluorescence of unparalleled brightness and photostability. Demonstrating very little nonspecific staining, Alexa Fluor® 660 phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Alexa Fluor® 660 phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Alexa Fluor® 660 phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and other Alexa Fluor® conjugates including secondary antibodies.

For research use only. Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
See the full line of Alexa Fluor® Dye products.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

Paclitaxel, Oregon Green™ 488 Conjugate (Oregon Green™ 488 Taxol, Flutax-2) (Invitrogen™)

This Oregon Green 488 paclitaxel derivative promises to be an important probe for labeling tubulin filaments in live cells. The fluorescent label on this new probe is attached to the 7-carbon of the paclitaxel, a strategy that permits selective binding of the probe to microtubules. Researchers have used similar fluorescent paclitaxel derivatives in a variety of systems.

Alexa Fluor™ 680 Phalloidin (Invitrogen™)

Alexa Fluor® 680 phalloidin is a high-affinity F-actin probe conjugated to our bright, photostable, near-infrared fluorescent Alexa Fluor® 680 dye.

Selectively stains F-actin
Outstanding fluorescence performance
Excitation/Emission: 679/702 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while Alexa Fluor® 680 provides near-infrared fluorescence of unparalleled brightness and photostability. Demonstrating very little nonspecific staining, Alexa Fluor® 680 phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Alexa Fluor® 680 phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Alexa Fluor® 680 phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and other Alexa Fluor® conjugates including secondary antibodies.

For research use only. Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
See the full line of Alexa Fluor® Dye products.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

Rhodamine Phalloidin (Invitrogen™)

Rhodamine phalloidin is a high-affinity F-actin probe conjugated to the red-orange fluorescent dye, tetramethylrhodamine (TRITC).

Selectively stains F-actin
Excitiation/Emission: 540/565 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples
Very widely cited fluorescent phalloidin conjugate

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while TRITC provides red-orange fluorescence of unparalleled brightness and photostability. Demonstrating very little nonspecific staining, Rhodamine phalloidin allows high-contrast discrimination of actin staining. Rhodamine phalloidin is one of the most commonly used fluorescent phalloidin conjugates in the literature, as evidenced by over 1,500 citations (maintained in our in-house database).

Use in Multiple Applications
Rhodamine phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Rhodamine phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and Alexa Fluor® conjugates including secondary antibodies. For research use only.

Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

Prodan (6-Propionyl-2-Dimethylaminonaphthalene) (Invitrogen™)

When the lipophlilic prodan is incorporated into membranes, its fluorescence spectra is sensitive to the physical state of the surrounding phospholipids.

Biotin-XX Phalloidin (Invitrogen™)

Biotin-XX phalloidin is a high-affinity F-actin probe conjugated to biotin-XX.

Selectively stains F-actin
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Demonstrating very little nonspecific staining, Biotin-XX phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Biotin-XX phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Biotin-XX phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and Alexa Fluor® conjugates including secondary antibodies.

For research use only. Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

Tubulin Tracker™ Deep Red (Invitrogen™)

Tubulin Tracker Deep Red provides deep-red/far-red fluorescence when bound to polymerized tubulin in live cells. Tubulin Tracker Deep Red is based on Docetaxel conjugated with a bright, photostable deep-red fluorophore. Docetaxel belongs to the family of cytoskeletal drugs that target tubulin. Tubulin Tracker Deep Red absorbs and emits optimally at 652 nm and 669 nm, respectively and can be visualized with standard Cy5 filter settings using almost any fluorescent imaging instrument. It can be multiplexed with blue, green, orange, red, and near-IR fluorophores.

CellLight™ Nucleus-CFP, BacMam 2.0 (Invitrogen™)

CellLight® Nucleus-CFP, BacMam 2.0, provides an easy way to label nuclei with cyan fluorescent protein (CFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses CFP fused to the SV40 nuclear localization sequence. You can observe nucleus-CFP behavior in live cells without the cellular toxicity associated with intercalators and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology

CellLight® Nucleus-CFP, BacMam 2.0, is a fusion construct of SV40 nuclear localization sequence and CFP, providing accurate and specific targeting to cellular nucleus-CFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

CellLight™ Plasma Membrane-RFP, BacMam 2.0 (Invitrogen™)

CellLight® Plasma Membrane-RFP, BacMam 2.0, provides an easy way to label the plasma membrane with red fluorescent protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to the myristolyation/palmitoylation sequence from Lck tyrosine kinase. You can observe plasma membrane-RFP behavior in live cells without staining internal membranes, and also use multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight® Plasma Membrane-RFP, BacMam 2.0, is a fusion construct of the myristolyation/palmitoylation sequence from Lck tyrosine kinase and TagRFP, providing accurate and specific targeting to cellular plasma membrane-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

CellLight™ Mitochondria-RFP, BacMam 2.0 (Invitrogen™)

CellLight® Mitochondria-RFP, BacMam 2.0, provides an easy way to label mitochondria with red fluorescent protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to the leader sequence of E1 alpha pyruvate dehydrogenase. You can observe mitochondria-RFP behavior in live cells independently of mitochondrial membrane potential and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight® Mitochondria-RFP, BacMam 2.0, is a fusion construct of the Leader sequence of E1 alpha pyruvate dehydrogenase and TagRFP, providing accurate and specific targeting to cellular mitochondria-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

CellLight™ Golgi-RFP, BacMam 2.0 (Invitrogen™)

CellLight® Golgi-RFP, BacMam 2.0, provides an easy way to label golgi with red fluorescent protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to human golgi resident enzyme (N-acetylgalactosaminyltransferase). You can observe golgi-RFP behavior in live cells using fluorescent imaging and multiplex with other fluorescent proteins or organic dyes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight® Golgi-RFP, BacMam 2.0, is a fusion construct of human golgi resident enzyme (N-acetylgalactosaminyltransferase) and TagRFP, providing accurate and specific targeting to cellular golgi-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

5-Hexadecanoylaminofluorescein (Invitrogen™)

The lipophilic 5-hexadecanoyl fluorescein binds to membranes with the fluorophore at the aqueous interface and the alkyl tail protruding into the lipid interior.

CellLight™ Late Endosomes-RFP, BacMam 2.0 (Invitrogen™)

CellLight® Late Endosomes-RFP, BacMam 2.0, provides an easy way to label late endosomes with red fluorescent protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to Rab7a. You can observe late endosomes-RFP behavior in live cells independently of organelle pH and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology

CellLight® Late Endosomes-RFP, BacMam 2.0, is a fusion construct of Rab7a and TagRFP, providing accurate and specific targeting to cellular Late Endosomes-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

Alexa Fluor™ 647 Phalloidin (Invitrogen™)

Alexa Fluor® 647 phalloidin is a high-affinity F-actin probe conjugated to our bright, photostable, far-red fluorescent Alexa Fluor® 647 dye.

Selectively stains F-actin
Outstanding fluorescence performance
Excitation/Emission: 650/668 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while Alexa Fluor® 647 provides far-red fluorescence of unparalleled brightness and photostability. Demonstrating very little nonspecific staining, Alexa Fluor® 647 phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Alexa Fluor® 647 phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Alexa Fluor® 647 phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and other Alexa Fluor® conjugates including secondary antibodies.

For research use only. Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
See the full line of Alexa Fluor® Dye products.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.