Shop All Cellular Structure Probes

CellLight™ Early Endosomes-RFP, BacMam 2.0 (Invitrogen™)

CellLight® Early Endosomes-RFP, BacMam 2.0, provides an easy way to label early endosomes with red fluorescent protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to Rab5a. You can observe early endosomes-RFP behavior in live cells independently of organelle pH and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight® Early Endosomes-RFP, BacMam 2.0, is a fusion construct of Rab5a and TagRFP, providing accurate and specific targeting to cellular Early Endosomes-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

Texas Red™-X Phalloidin (Invitrogen™)

Texas Red®-X phalloidin is a high-affinity F-actin probe conjugated to our bright, photostable, red fluorescent Texas Red®-X dye.

Selectively stains F-actin
Outstanding fluorescence performance
Excitation/Emission: 591/608 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while Texas Red®-X provides red fluorescence with superior brightness. Demonstrating very little nonspecific staining, Texas Red®-X phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Texas Red®-X phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Texas Red®-X phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and Alexa Fluor® conjugates including secondary antibodies.

For research use only. Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

Alexa Fluor™ Plus 405 Phalloidin (Invitrogen™)

Alexa Fluor Plus 405 Phalloidin is a high-affinity filamentous actin (F-actin) probe (phalloidin) conjugated to our bright, photostable, violet-fluorescent Alexa Fluor 405 dye.

• Selectively stains F-actin
• Outstanding fluorescence performance
• Excitation/emission: 405/450 nm. Compatible with standard DAPI filter set or 405/violet excitation laser.
• Superior to antibody staining
• Optimal for fixed and permeabilized samples

Get superior results in your actin staining studies
Phalloidin is a bi-cyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides ""death cap"" mushroom and commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has several advantages over antibodies for actin labeling, including virtually identical binding properties with actin from different species of plants and animals, and low non-specific binding. Phalloidin binds F-actin with high selectivity, while Alexa Fluor Plus 405 provides violet fluorescence of unparalleled brightness and photostability.

Use in multiple applications
Alexa Fluor Plus 405 Phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Its staining is fully compatible with other fluorescent stains used in cellular analyses, including fluorescent proteins, Qdot nanocrystals, and other Alexa Fluor conjugates including secondary antibodies.

SYTO™ Deep Red Nucleic Acid Stain, for live cells (Invitrogen™)

SYTO Deep Red Nucleic Acid Stain is cell-permeant dye that specifically stains the nuclei of live, dead, or fixed cells. It can be used in live-cell fluorescent imaging workflows and in fixed cell workflows, including immunocytochemistry, immunohistochemistry, and immunofluorescence experiments. After a brief incubation with the stain, the nuclei of live, dead, or fixed cells fluoresce with a deep red/far red signal that is detectable with a Cy5/deep red standard filter set or laser configuration.

• Cell-permeant dye that stains nuclei of live, dead, or fixed cells
• Detectable with deep red/Cy5 fluorecence filter set, with excitation/emission maxima of 652/669 nm
• Five times greater fluorescent signal when staining dsDNA vs RNA

SYTO Deep Red Nucleic Acid Stain can be mulitplexed with blue, green, orange, red, and near-IR fluorophores when compatible fluorescent filter/laser configurations are used. The stain increases in fluorescence with increasing concentrations of dsDNA. SYTO Deep Red Nucleic Acid Stain displays up to five times more fluorescence when incubated with dsDNA vs RNA, unlike DRAQ or other live-cell deep red nucleic acid stains. It has a bright initial signal and excellent photo stability in a typical imaging experiment. These properties make the stain ideal as a simple and quantitative single-step dead/fixed cell nucleus-labeling dye for use with fluorescence microscopes, fluorimeters, fluorescence microplate readers, and flow cytometers. The stain has been successfully used on live monolayer cells and spheroid cells and as a nuclear counter-stain in immunocytochemistry.

CellLight™ Mitochondria-GFP, BacMam 2.0 (Invitrogen™)

CellLight® Mitochondria-GFP, BacMam 2.0, provides an easy method for the labeling of mitochondria with Green Fluorescent Protein (GFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning. This ready-to-use construct is transduced/transfected into cells using BacMam 2.0 technology, where it expresses GFP fused to the Leader sequence of E1 alpha pyruvate dehydrogenase. You can observe mitochondria-GFP behavior in live cells using a fluorescent imaging system and standard FITC/GFP filter set. Study staining of mitochondria, which does not depend upon mitochondrial membrane potential. In addition, you can co-transduce/transfect more than one CellLight® reagent and label live cells with multiple tracking or tracing dyes to image dynamic cellular processes. Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexing with antibodies using immunocytochemical techniques.

CellLight® Technology
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose

Learn more about CellLight® fluorescent protein labeling

BacMam Technology
CellLight® Mitochondria-GFP, BacMam 2.0, is a fusion construct of the Leader sequence of E1 alpha pyruvate dehydrogenase and emGFP, providing accurate and specific targeting to cellular mitochondria-GFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

CellLight™ Nucleus-GFP, BacMam 2.0 (Invitrogen™)

CellLight® Nucleus-GFP, BacMam 2.0, provides an easy way to label nuclei with green fluorescent protein (GFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses GFP fused to the SV40 nuclear localization sequence. You can observe nucleus-GFP behavior in live cells without the cellular toxicity associated with intercalators and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight® Nucleus-GFP, BacMam 2.0, is a fusion construct of SV40 nuclear localization sequence and emGFP, providing accurate and specific targeting to cellular nucleus-GFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

CellLight™ Lysosomes-RFP, BacMam 2.0 (Invitrogen™)

CellLight® Lysosomes-RFP, BacMam 2.0, provides an easy method for the labeling of lysosomes with Red Fluorescent Protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning. This ready-to-use construct is transduced/transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to Lamp1 (lysosomal associated membrane protein 1). You can observe lysosomes-RFP behavior in live cells using a fluorescent imaging system and standard TRITC/RFP filter set. Study staining of lysosomes, which does not depend upon organelle pH or some other parameter, that can be different from one cell type to other. In addition, you can co-transduce/transfect more than one CellLight® reagent and label live cells with multiple tracking or tracing dyes to image dynamic cellular processes. Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexing with antibodies using immunocytochemical techniques.

CellLight® Technology
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose

Learn more about CellLight® fluorescent protein labeling

BacMam Technology
CellLight® Lysosomes-RFP, BacMam 2.0, is a fusion construct of Lamp1 (lysosomal associated membrane protein 1) and TagRFP, providing accurate and specific targeting to cellular lysosomes-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

CellLight™ Nucleus-CFP, BacMam 2.0 (Invitrogen™)

CellLight® Nucleus-CFP, BacMam 2.0, provides an easy way to label nuclei with cyan fluorescent protein (CFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses CFP fused to the SV40 nuclear localization sequence. You can observe nucleus-CFP behavior in live cells without the cellular toxicity associated with intercalators and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology

CellLight® Nucleus-CFP, BacMam 2.0, is a fusion construct of SV40 nuclear localization sequence and CFP, providing accurate and specific targeting to cellular nucleus-CFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

Alexa Fluor™ 350 Phalloidin (Invitrogen™)

Alexa Fluor® 350 phalloidin is a high-affinity F-actin probe conjugated to our bright, photostable, blue fluorescent Alexa Fluor® 350 dye.

Selectively stains F-actin
Outstanding fluorescence performance
Excitation/Emission: 346/442 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while Alexa Fluor® 350 provides blue fluorescence of unparalleled brightness and photostability. Demonstrating very little nonspecific staining, Alexa Fluor® 350 phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Alexa Fluor® 350 phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Alexa Fluor® 350 phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and other Alexa Fluor® conjugates including secondary antibodies.

For research use only. Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
See the full line of Alexa Fluor® Dye products.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

CellLight™ Histone 2B-RFP, BacMam 2.0 (Invitrogen™)

CellLight® Histone 2B-RFP, BacMam 2.0, provides an easy way to label histone 2b with red fluorescent protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to histone 2B. You can observe histone 2B-RFP behavior in live cells using fluorescent imaging with almost no cytotoxicity.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight® Histone 2B-RFP, BacMam 2.0, is a fusion construct of histone 2B and TagRFP, providing accurate and specific targeting to cellular histone 2B-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

Fluorescein Phalloidin (Invitrogen™)

Fluorescein phalloidin is a high-affinity F-actin probe conjugated to the green fluorescent dye, fluorescein (FITC).

Selectively stains F-actin
Excitation/Emission: 496/516 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while fluorescein provides green fluorescence. Demonstrating very little nonspecific staining, fluorescein phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Fluorescein phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Fluorescein phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and Alexa Fluor® conjugates including secondary antibodies. For research use only.

Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

Jasplakinolide (Invitrogen™)

Jasplakinolide is a macrocyclic peptide isolated from the marine sponge Jaspis johnstoni and is a potent inducer of actin polymerization in vitro by stimulating actin filament nucleation. Jasplakinolide competes with phalloidin for actin binding (Kd = 15 nM).

CellLight™ Plasma Membrane-RFP, BacMam 2.0 (Invitrogen™)

CellLight® Plasma Membrane-RFP, BacMam 2.0, provides an easy way to label the plasma membrane with red fluorescent protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to the myristolyation/palmitoylation sequence from Lck tyrosine kinase. You can observe plasma membrane-RFP behavior in live cells without staining internal membranes, and also use multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight® Plasma Membrane-RFP, BacMam 2.0, is a fusion construct of the myristolyation/palmitoylation sequence from Lck tyrosine kinase and TagRFP, providing accurate and specific targeting to cellular plasma membrane-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

Alexa Fluor™ 546 Phalloidin (Invitrogen™)

Alexa Fluor® 546 phalloidin is a high-affinity F-actin probe conjugated to our bright, photostable, orange-fluorescent Alexa Fluor® 546 dye.

Selectively stains F-actin
Outstanding fluorescence performance
Excitation/Emission: 556/570 nm
Superior to antibody staining
Optimal for fixed and permeabilized samples

Get Superior Results in Actin Staining Studies
Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from the deadly Amanita phalloides "death cap" mushroom and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has virtually identical binding properties with actin from different species including plants and animals. Phalloidin binds F-actin with high selectivity while Alexa Fluor® 546 provides orange fluorescence of unparalleled brightness and photostability. Demonstrating very little nonspecific staining, Alexa Fluor® 546 phalloidin allows high-contrast discrimination of actin staining.

Use in Multiple Applications
Alexa Fluor® 546 phalloidin can be used to visualize and quantitate F-actin in tissue sections, cell cultures, or cell-free preparations. Alexa Fluor® 546 phalloidin staining is fully compatible with other fluorescent stains used in cellular analyses including fluorescent proteins, Qdot® nanocrystals, and other Alexa Fluor® conjugates including secondary antibodies.

For research use only. Not intended for human or animal therapeutic or diagnostic use.

Related Links
Read about labeling F-Actin with phallotoxins.
See the full line of Alexa Fluor® Dye products.
Create a Cellular Masterpiece with Alexa Fluor® Phalloidin using the Cell Paint Tool.

CellLight™ Early Endosomes-GFP, BacMam 2.0 (Invitrogen™)

CellLight® Early Endosomes-GFP, BacMam 2.0, provides an easy way to label early endosomes with green fluorescent protein (GFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight® fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses GFP fused to Rab5a. You can observe early endosomes-GFP behavior in live cells independently of organelle pH and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight® constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight® Technology is:
Fast and convenient: simply add CellLight® reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight® reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight® Early Endosomes-GFP, BacMam 2.0, is a fusion construct of Rab5a and emGFP, providing accurate and specific targeting to cellular Early Endosomes-GFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight® reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.