Shop All Labels & Labeling Kits

CellTrace™ Oregon Green™ 488 Carboxylic Acid Diacetate, Succinimidyl Ester (Carboxy-DFFDA, SE), cell permeant, mixed isomers (Invitrogen™)

Like CFDA SE, CellTrace™ Oregon Green® 488 (carboxy-DFFDA SE) should be a useful tool for following proliferating cells. This Oregon Green® 488 probe passively diffuses into cells, where it is colorless and nonfluorescent until its acetate groups are removed by intracellular esterases to yield a highly fluorescent, amine-reactive dye. Upon reaction with intracellular amines, the probe forms Oregon Green® 488 conjugates that are well-retained by cells. Unlike fluorescein conjugates, Oregon Green® 488 conjugates exhibit bright, photostable green fluorescence that is independent of pH at typical cellular pH values (pH-6-8).

Pacific Blue™ Succinimidyl Ester (Invitrogen™)

The amine-reactive Pacific Blue™ succinimidyl ester can be used to can be used to create blue-fluorescent bioconjugates with excitation/emission maxima ~410/455 nm that are excitable by the 405 nm spectral line of the blue diode (violet) laser.

View all Pacific Blue™ dye products..

View the Fluorophore Selection Guide.

CellTrace™ BODIPY™ TR Methyl Ester (Lipophilic Counterstain For GFP) (Invitrogen™)

The red-fluorescent CellTrace™ BODIPY® TR methyl ester is an excellent counterstain for cells and tissues that are expressing GFP. CellTrace™ BODIPY® TR methyl ester readily permeates cell membranes and selectively stains mitochondria and endomembranous organelles such as endoplasmic reticulum and the Golgi apparatus, but does not appear to localize in the plasma membrane. CellTrace™ BODIPY® TR methyl ester staining is retained after paraformaldehyde fixation.

GalNAz (N-azidoacetylgalactosamine tetraacylated) (Thermo Scientific™)

Thermo Scientific Pierce GalNAz (N-azidoacetylgalactosamine-tetraacylated) is an azide-labeled sugar that provides a highly specific approach for studying glycoproteins through in vivo metabolic labeling and chemoselective ligation.

Features of Azido-Sugars:

Bioorthogonal—the azido group is small, nonreactive and absent from living systems; as such the azido-sugar compounds do not interfere with endogenous cellular pathways and substitute for their naturally occurring analogs
Compatible—reaction chemistry with phosphine compounds occurs effectively in simple buffer conditions; requires no accessory reagents such as copper or reducing agents
Chemoselective—azide and phosphine groups do not react or interfere with components of biological samples but conjugate to one another with high efficiency
Versatile—azide tag can be targeted for detection, immobilization, conjugation or affinity purification depending on which phosphine-activated compound it is reacted with

These sugars are azide-derivatives of naturally occurring monosaccharides that cells use to glycosylate proteins using post-translational modification biochemical pathways. The azide functional group is small and nonreactive with endogenous molecules. When supplied to cells, these compounds become incorporated by glycosylation events to effectively "tag" glycoproteins with the azide group. The azide group then can be specifically targeted for detection or conjugation using alkyne-activated reagents ("click" chemistry) or phosphine-activated reagents (Staudinger ligation).

When used in combination with phosphine-activated fluorescent dyes, biotin reagents, and or other compounds, these azido-modified sugars facilitate the investigation of cellular pathways involving glycosylation.

There are several classes of glycoproteins grouped by the type of carbohydrate and amino acid linkage site. N-linked glycosylation is a modification of asparagine amines, whereas O-linked glycosylation occurs through the hydroxyl of serine and threonine residues. The azido-modified sugars are metabolic substitutes for endogenous amino sugars. ManNAz is converted by cells to an azido sialic acid derivative that is used for N-linked glycosylation of cell surface proteins. GlcNAz and GalNAz are predominantly used to label the O-linked glycosylation (O-GlcNAc and O-GalNAc).

Related Products
GlcNAz (N-azidoacetylglucosamine tetraacylated)
ManNAz (N-azidoacetylmannosamine tetraacylated)

DyLight™ 775-B2 NHS Ester (Thermo Scientific™)

Thermo Scientific DyLight near-infrared specialty dyes, comparable to Alexa Fluor and IRDye NIR dyes, can be used to label antibodies, peptides, and other proteins at primary amines. DyLight 775-B2 dye has a structure based on the benzopyrillium core, with 2 sulfonates. It has excitation and emission peaks at 772 and 787 nm, respectively (in ethanol).

General characteristics of DyLight near-infrared emitting specialty dyes:

Large selection—the largest family of dyes available for NIR fluorescence applications
NHS ester reactive group—allows immediate labeling of antibodies, proteins, peptides and other amine-containing molecules through amide bond formation
Broad spectrum of water solubilities—choose from hydrophilic to hydrophobic dyes to optimize the right dye label for the best performance in a given application
NIR dyes avoid background interference—DyLight NIR Dyes avoid fluorescence interference or quenching effects from biomolecules present in samples
Excellent signal penetration through cells and tissues—DyLight NIR Dyes provide the optimal window for excitation and emission for in vivo imaging applications

DyLight NIR Dyes are a family of labeling agents that can be used for bright fluorescence detection in cell-based imaging or in vivo imaging applications. NIR dyes can be selected based upon their characteristic excitation and emission properties or relative hydrophilicity and hydrophobicity attributes. Dyes that contain a greater number of negatively charged sulfonates generally will have greater water solubility than dyes with fewer sulfonates. More hydrophobic dyes often provide better cell penetrating ability in vivo, while more hydrophilic dyes have less nonspecific binding potential. Each dye contains an amine-reactive NHS ester for simple modification of antibodies, proteins, peptides or other biomolecules through amide bond formation. NIR dyes are best for imaging through tissues and away from indigenous fluorescent biomolecule interference or quenching. DyLight Near Infrared Dyes represent the largest selection of fluorescent labels that are commercially available.

Criteria to consider when choosing a DyLight NIR Specialty Dye
• Excitation and emission wavelengths—choose the best dye to match the excitation and emission capabilities of your instrument
• Water solubility—choose a DyLight NIR Dye based on its relative hydrophilicity, which directly correlates to the number of negatively-charged sulfonates it has on its core structure. More hydrophilic dyes are best at maintaining water solubility of a labeled antibody and limiting the nonspecific binding of the conjugate. More hydrophobic dyes often are best at penetrating tissues and cell membranes in vivo, meaning that dyes with fewer sulfonates may work best for some applications.
• DyLight Dye selection—the broad selection of NIR dyes allows a number of candidate dyes to be tested in a given application for optimal performance.

Applications:
In vivo or ex vivo imaging
• Tumor imaging with labeled peptides
• NIR fluorescence (NIRF) imaging of labeled silica nanoparticles
• NIR in vitro imaging and characterization
• Determination of thermal stability
• Cytotoxicity assays
• Molecular imaging
• UV-VIS-NIR spectroscopy
• Fluorescence correlation spectroscopy
• MRI applications
• DNA sequencing
• Primer labeling for PCR
• 2-D gel electrophoresis
• Flow cytometry/fluorescence-activated cell sorting (FACS)
• Laser scanning confocal microscopy

Related Products
DyLight™ 775-B3 NHS Ester
DyLight™ 775-B4 NHS Ester

TRITC (5/6-tetramethyl-rhodamine isothiocyanate), mixed isomer (Thermo Scientific™)

Thermo Scientific TRITC is a high-performance derivative of rhodamine dye, activated for easy and reliable labeling of antibodies, proteins and other molecules for use as fluorescent probes.

Features of TRITC:

Amine-specific labeling—TRITC varieties of rhodamine efficiently label antibodies and other purified proteins at primary amines (lysine side chains)
Optimized procedure—following the standard protocol results in antibodies with excellent dye:protein ratios for optimum activity and fluorescence

Tetramethylrhodamine isothiocyanate (TRITC) is an amine-reactive derivative of rhodamine dye that has wide-ranging application as antibody and other probe labels for use in fluorescence microscopy, flow cytometry and immunofluorescence-based assays such as western blotting and ELISA.

Applications:
• Label antibodies for use as immunofluorescent probes
• Label oligonucleotides for hybridization probes
• Detect proteins in gels and on western blots

Properties of Rhodamine Dyes:
Thermo Scientific Pierce Rhodamine Dyes are mixtures of isomers with reactive groups attached at the 5- and 6-positions of the bottom ring. The properties of these isomers are indistinguishable in terms of excitation and emission spectra, and for protein applications there is no need to isolate a specific isomer.

TRITC is the base tetramethylrhodamine molecule functionalized with an isothiocyanate reactive group (—N=C=S) at one of two hydrogen atoms on the bottom ring of the structure. This derivative is reactive towards primary amine groups on proteins, peptides and other biomolecules.

Application Data:

Related Products
Pierce™ NHS-Rhodamine Antibody Labeling Kit
NHS-Rhodamine (5/6-carboxy-tetramethyl-rhodamine succinimidyl ester), mixed isomer

Oregon Green™ 488 Carboxylic Acid, Succinimidyl Ester, 6-isomer (Invitrogen™)

The amine-reactive Oregon Green® 488 carboxylic acid, succinimidyl ester can be used to can be used to create green fluorescent bioconjugates with excitation/emission maxima ~496/524 nm. This fluorinated analog of fluorescein overcomes some of the key limitations of fluorescein, including greater photostability and a lower pKa (pKa ~ 4.7 versus 6.4 for fluorescein), making its fluorescence essentially pH insensitive in the physiological pH range.

CellTrace™ Calcein Red-Orange, AM - Special Packaging (Invitrogen™)

CellTrace calcein red-orange AM is a cell-permeant dye that can be used to determine cell viability in most eukaryotic cells. Unlike calcein AM (C-1430, C-3099, C-3100), CellTrace calcein red-orange AM is intrinsically fluorescent; thus, an additional wash step may be necessary to minimize background fluorescence from dye that is not taken up by cells. However, CellTrace calcein red-orange (excitation/emission maxima 577/590 nm) is well-retained by live cells that possess intact plasma membranes, and consequently it is a useful cell tracer and indicator of cell viability.

SiteClick™ Antibody Azido Modification Kit (Invitrogen™)

Create a label-ready site-specific azido-modified antibody without lengthy and inefficient genetic modification using the SiteClick Antibody Azido Modification Kit. SiteClick labeling uses enzymes to specifically attach an azido moiety to the heavy chains of an IgG antibody, ensuring that the antigen binding domains remain unaltered for binding to the antigen target. This site selectivity is achieved by targeting the carbohydrate domains present on essentially all IgG antibodies regardless of isotype and host species. Once azido–modified, a variety of sDIBO alkyne labels are available for attachment to the antibody via Click chemistry (see list below). This provides the flexibility to choose different labels for your antibody depending on your assay.

Features of the SiteClickAntibody Azido Modification Kit:
• Contains everything required to label 100–250 µg of IgG antibody
• Easy-to-follow step-by-step protocol
• Highly efficient, site-specific, reproducible labeling chemistry results in high quality antibody conjugate

Learn more about SiteClick labeling technology ›

Related products
Click-iT Alexa Fluor 488 sDIBO Alkyne for Antibody Labeling
Click-iT Alexa Fluor 555 sDIBO Alkyne for Antibody Labeling
Click-iT Alexa Fluor 647 sDIBO Alkyne for Antibody Labeling
Click-iT Biotin sDIBO Alkyne for Antibody Labeling
Click-iT Amine sDIBO Alkyne for Antibody Labeling
Click-iT SDP Ester sDIBO Alkyne for Antibody Labeling

Custom SiteClick Antibody Labeling Service
If you have an antibody that is considered "difficult to label" or has lost activity after labeling using a conventional method, please contact our custom service representatives to determine whether the SiteClick Antibody Labeling Service would be right for your antibody. We offer complete custom SiteClick antibody labeling services with the option of multiple detection molecules including biotin, Alexa Fluor dyes, Qdot fluorophores, R-PE, chelates for PET imaging, and many others.

DyLight™ 775-B3 NHS Ester (Thermo Scientific™)

Thermo Scientific DyLight near-infrared specialty dyes, comparable to Alexa Fluor and IRDye NIR dyes, can be used to label antibodies, peptides, and other proteins at primary amines. DyLight 775-B3 dye has a structure based on the benzopyrillium core, with 3 sulfonates. It has excitation and emission peaks at 770 and 788 nm, respectively (in ethanol).

General characteristics of DyLight near-infrared emitting specialty dyes:

Large selection—the largest family of dyes available for NIR fluorescence applications
NHS ester reactive group—allows immediate labeling of antibodies, proteins, peptides and other amine-containing molecules through amide bond formation
Broad spectrum of water solubilities—choose from hydrophilic to hydrophobic dyes to optimize the right dye label for the best performance in a given application
NIR dyes avoid background interference—DyLight NIR Dyes avoid fluorescence interference or quenching effects from biomolecules present in samples
Excellent signal penetration through cells and tissues—DyLight NIR Dyes provide the optimal window for excitation and emission for in vivo imaging applications

DyLight NIR Dyes are a family of labeling agents that can be used for bright fluorescence detection in cell-based imaging or in vivo imaging applications. NIR dyes can be selected based upon their characteristic excitation and emission properties or relative hydrophilicity and hydrophobicity attributes. Dyes that contain a greater number of negatively charged sulfonates generally will have greater water solubility than dyes with fewer sulfonates. More hydrophobic dyes often provide better cell penetrating ability in vivo, while more hydrophilic dyes have less nonspecific binding potential. Each dye contains an amine-reactive NHS ester for simple modification of antibodies, proteins, peptides or other biomolecules through amide bond formation. NIR dyes are best for imaging through tissues and away from indigenous fluorescent biomolecule interference or quenching. DyLight Near Infrared Dyes represent the largest selection of fluorescent labels that are commercially available.

Criteria to consider when choosing a DyLight NIR Specialty Dye
• Excitation and emission wavelengths—choose the best dye to match the excitation and emission capabilities of your instrument
• Water solubility—choose a DyLight NIR Dye based on its relative hydrophilicity, which directly correlates to the number of negatively-charged sulfonates it has on its core structure. More hydrophilic dyes are best at maintaining water solubility of a labeled antibody and limiting the nonspecific binding of the conjugate. More hydrophobic dyes often are best at penetrating tissues and cell membranes in vivo, meaning that dyes with fewer sulfonates may work best for some applications.
• DyLight Dye selection—the broad selection of NIR dyes allows a number of candidate dyes to be tested in a given application for optimal performance.

Applications:
In vivo or ex vivo imaging
• Tumor imaging with labeled peptides
• NIR fluorescence (NIRF) imaging of labeled silica nanoparticles
• NIR in vitro imaging and characterization
• Determination of thermal stability
• Cytotoxicity assays
• Molecular imaging
• UV-VIS-NIR spectroscopy
• Fluorescence correlation spectroscopy
• MRI applications
• DNA sequencing
• Primer labeling for PCR
• 2-D gel electrophoresis
• Flow cytometry/fluorescence-activated cell sorting (FACS)
• Laser scanning confocal microscopy

Related Products
DyLight™ 775-B2 NHS Ester
DyLight™ 775-B4 NHS Ester

Molecular Probes® Cell Imaging Kit (Invitrogen™)

Fluorescence imaging protocols are sometimes complicated and tedious, with more time spent preparing samples and reagents than acquiring images and data. To help researchers focus more on biology and get results faster, we have developed a set of imaging reagents that emphasize user friendliness and workflow convenience.

The Molecular Probes® Cell Imaging Kit contains the following products:

NucBlue™ Live ReadyProbes™ Reagent (Cat. No. R37605)
NucRed™ Live 647 ReadyProbes™ Reagent (Cat. No. R37106)
ReadyProbes™ Cell Viability Imaging Kit, Blue/Green (Cat. No. R37609)
Goat Anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor™ 594 conjugate (Cat. No. R37117)
Goat Anti-Mouse lgG Secondary Antibody, Alexa Fluor™ 488 conjugate (Cat. No. R37120)
Image-iT™ FX Signal Enhancer ReadyProbes™ Reagent (Cat. No. R37107)

HABA (4'-hydroxyazobenzene-2-carboxylic acid) (Thermo Scientific™)

Thermo Scientific Pierce HABA is 4'-hydroxyazobenzene-2-carboxylic acid, a simple reagent that enables spectrophotometric (colorimetric) estimation of biotinylation levels of labeled proteins and other molecules.

Features of HABA:

• HABA-avidin complex can be used over a wide range of pH and salt concentrations
• Amount of Avidin can be calculated directly from the increased absorbance at 500nm complexing with the HABA Dye
• Calculate results directly from absorbance values based on extinction coefficients using the procedure outlined in the instructions
• Complete kits also available! See Pierce Biotin Quantitation Kit (Part No. 28005) and Fluorescence Biotin Quantitation Kit (Part No. 46610)

Determine the molar ratio of biotin incorporated into a protein using the HABA-Avidin method. HABA dye (4'-hydroxyazobenzene-2-carboxylic acid ) binds to avidin to produce a yellow-orange colored complex which absorbs at 500nm. Free biotin will displace the HABA dye and cause the absorbance to decrease. A standard curve can be established using the free biotin to estimate the number of moles of biotin incorporated after biotinylating a protein. View online HABA Calculator.

Click-IT™ Tetramethylrhodamine (TAMRA) Protein Analysis Detection Kit (Invitrogen™)

The Click-iT® Tetramethylrhodamine (TAMRA) Glycoprotein Detection Kit provides the second part of the simple and robust two-step technique to identify and characterize glycoproteins by one- or two-dimensional gel electrophoresis. In step two, after the incorporation of the azide handle into protein glycan structures with either a Click-iT® metabolic labeling reagent or the Click-iT® Enzymatic Labeling system, the azide-modified glycoproteins are detected via the chemoselective ligation or click reaction between an azide and an alkyne. Gels with TAMRA labeled glycoproteins can be subsequently stained with the Multiplexed Proteomics™ technologies, SYPRO® Ruby total protein stain and PRO-Q® Emerald glycoprotein stain for the differential analysis of glycoprotein subclasses, total proteins and total glycoproteins in the same gel. Click-iT® modified glycoproteins are also compatible with downstream LC-MS/MS and MALDI MS analysis for identification.

Oregon Green™ 488-X, Succinimidyl Ester, 6-isomer (Invitrogen™)

The amine-reactive Oregon Green® 488-X, succinimidyl ester can be used to can be used to create green fluorescent bioconjugates with excitation/emission maxima ~496/524 nm. This fluorinated analog of fluorescein overcomes some of the key limitations of fluorescein, including greater photostability and a lower pKa (pKa ~ 4.7 versus 6.4 for fluorescein), making its fluorescence essentially pH insensitive in the physiological pH range. This reactive dye contains an additional seven-atom aminohexanoyl spacer ("X") between the fluorophore and the succinimidyl ester group. This spacer helps to separate the fluorophore from its point of attachment, potentially reducing the interaction of the fluorophore with the biomolecule to which it is conjugated.

BODIPY™ TR-X NHS Ester (Succinimidyl Ester) (Invitrogen™)

BODIPY® TR-X dye is bright, red fluorescent dye with similar excitation and emission to Texas Red® or Alexa Fluor® 594 dye. It has a high extinction coefficient and fluorescence quantum yield and is relatively insensitive to solvent polarity and pH change. In contrast to the highly water soluble fluorophores Alexa Fluor® 488 dye and fluorescein (FITC), BODIPY® dyes have unique hydrophobic properties ideal for staining lipids, membranes, and other lipophilic compounds. BODIPY® TR-X dye has a relatively long excited-state lifetime (typically 5 nanoseconds or longer), which is useful for fluorescence polarization-based assays and a large two-photon cross-section for multiphoton excitation. In addition to reactive dye formulations, we offer BODIPY® TR-X dye conjugated to a variety of antibodies, peptides, proteins, tracers, and amplification substrates optimized for cellular labeling and detection.

The NHS ester (or succinimidyl ester) of BODIPY® TR-X is the most popular tool for conjugating the dye to a protein or antibody. NHS esters can be used to label the primary amines (R-NH2) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting BODIPY® TR-X conjugates exhibit bright fluorescence, narrow emission bandwidths, and relatively long excited-state lifetimes, which can be useful for fluorescence polarization assays and two-photon excitation (TPE) microscopy.

This reactive dye contains a seven-atom aminohexanoyl ("X") spacer between the fluorophore and the NHS ester group. This spacer helps to separate the fluorophore from its point of attachment, potentially reducing the interaction of the fluorophore with the biomolecule to which it is conjugated.

Detailed information about this BODIPY® TR-X NHS ester:

Fluorophore label: BODIPY® TR-X dye
Reactive group: NHS ester (succinimidyl ester)
Reactivity: Primary amines on proteins and ligands, amine-modified oligonucleotides
Ex/Em of the conjugate: 588/616 nm
Extinction coefficient: 68,000 cm-1M-1
Molecular weight: 634.46

Typical Conjugation Reaction
Amine-reactive reagents can be conjugated with virtually any protein or peptide; the provided protocol is optimized for IgG antibodies. The reaction can be scaled for any amount of protein, but the concentration of the protein should be at least 2 mg/mL for optimal results. We recommend trying three different degrees of labeling, using three different molar ratios of the reactive reagent to protein.

The BODIPY® NHS ester is typically dissolved in high-quality anhydrous dimethylformamide (DMF) or dimethylsulfoxide (DMSO), and the reaction is carried out in 0.1-0.2 M sodium bicarbonate buffer, pH 8.3, at room temperature for 1 hour. Because the pKa of the terminal amine is lower than that of the lysine epsilon-amino group, you may achieve more selective labeling of the amine terminus using a buffer closer to neutral pH.

Conjugate Purification
Labeled antibodies are typically separated from free BODIPY® dye using a gel filtration column, such as Sephadex™ G-25, BioGel® P-30, or equivalent. For much larger or smaller proteins, select a gel filtration medium with an appropriate molecular weight cut-off or purify by dialysis. We offer several purification kits optimized for different quantities of antibody conjugate:
Antibody Conjugate Purification Kit for 0.5-1 mg (A33086)
Antibody Conjugate Purification Kit for 20-50 µg (A33087)
Antibody Conjugate Purification kit for 50-100 µg (A33088)

Learn More About Protein and Antibody Labeling
We offer a wide selection of Molecular Probes® antibody and protein labeling kits to fit your starting material and your experimental setup. See our Antibody Labeling kits or use our Labeling Chemistry Selection Tool for other choices. To learn more about our labeling kits, read Kits for Labeling Proteins and Nucleic Acids—Section 1.2 in The Molecular Probes® Handbook.

We’ll Make a Custom Conjugate for You
If you can’t find what you’re looking for in our online catalog, we’ll prepare a custom antibody or protein conjugate for you. Our custom conjugation service is efficient and confidential, and we stand by the quality of our work. We are ISO 9001:2000 certified.