Shop All Protein Labeling Kits

Click-IT™ O-GlcNAc Enzymatic Labeling System (Invitrogen™)

The Click-iT® O-GlcNAc Enzymatic Labeling System provides a highly sensitive and efficient method for the in-vitro modification of O-GlcNAc modified proteins. Proteins are enzymatically labeled utilizing the permissive mutant β-1,4-galactosyltransferase (Gal-T1 (Y289L)) which transfers azido-modified galactose (GalNAz) from UDP-GalNAz to O-GlcNAc residues. Then, via the chemoselective ligation or click reaction between an azide and an alkyne, the azido-labeled glycoproteins can then be detected with a Click-iT® Glycoprotein Detection kit for gels (TAMRA or Dapoxyl® alkyne) or Western blots (biotin alkyne). Labeling and detection can be completed in less than 24 hours and the Click-iT® glycoprotein products are compatible with LC-MS/MS and Multiplexed Proteomics™ technologies for in-depth analyses of this important post-translational modification.

Click-iT™ HPG Alexa Fluor™ 488 Protein Synthesis Assay Kit (Invitrogen™)

The Click-iT® HPG Alexa Fluor® 488 Protein Synthesis Assay Kit provides a fast, sensitive, non-toxic, and non-radioactive method for the detection of nascent protein synthesis utilizing fluorescence microscopy, high-content imaging, or flow cytometry. Included in the kit are L-homopropargylglycine (HPG), an amino acid analog of methionine containing an alkyne moiety, and Alexa Fluor® 488 azide. The HPG is fed to cultured cells and incorporated into proteins during active protein synthesis. Addition of the Alexa Fluor® 488 azide leads to a chemoselective ligation or "click" reaction between the green fluorescent azide and the alkyne, allowing the modified proteins to be detected by imaged-based analysis.

Non-radioactive alternative—an alternative to the traditional 35S-methionine
Visualize bulk protein dynamics—fluorescent tagging of proteins allows their localization to be determined, including aggregation
Specificity—selective, specific reaction between label and detection tags
Stability —product contains an irreversible, covalent bond
Multiplex-enabled—use in conjuction with Click®-iT AHA (azide amino acid and alkyne dye) to detect spatial and temporal differences
Applicability to biological samples—easy detection; high sensitivity and low background, regardless of complexity

The Click-iT® HPG Alexa Fluor® 488 Protein Synthesis Assay Kit has been successfully tested in HeLa, A549, and U-2 OS cells with a variety of reagents that inhibit protein synthesis, including cycloheximide and anisomycin. The applicability of these probes to monitor protein degradation has also been shown using inhibitors of the proteasome (MG132 and Bortezomib) and blockers of autophagy (chloroquine) in HeLa cells.

Additionally, due to differences in Click-iT® chemistry between the Click-iT® HPG Alexa Fluor® 488 Protein Synthesis Assay Kit and Click®-iT AHA with Alexa Fluor® 594 Alkyne, these reagents can be used in conjunction for spatial or temporal determination of differences in nascent protein synthesis.

Oregon Green™ 488 Protein Labeling Kit (Invitrogen™)

Molecular Probes® Protein Labeling Kits provide a convenient means for attaching a fluorescent label (or biotin) to an antibody (or a protein larger than 40 kDa). Conjugates are ideal for multiple applications, including flow cytometry, fluorescent microscopy, immunohistochemistry, primary detection, ELISAs, immunocytochemistry, FISH, and more. Kits are available in 12 Alexa Fluor® dye colors, biotin, the hapten Oregon Green® 488, fluorescein EX, and Texas Red® dye. Each kit provides the components needed to perform three protein conjugations and purifications.

Important Features of Protein Labeling Kits:

• Labeled proteins typically ready to use in 2 hr (~30 min hands-on time)
• Designed to label 1 mg of IgG
• Simple protocol—react, separate, use
• Stabilizing proteins must be removed from the sample before labeling


The Benefits of Alexa Fluor® Dyes
Compared to traditional dyes, Alexa Fluor® dyes are brighter, more photostable, and more pH resistant between pH 4 and 10. And generally when using Alexa Fluor® dyes, higher degrees of labeling can be achieved without intramolecular quenching. For details see Alexa Fluor® Dyes Spanning the Visible and Infrared Spectrum—Section 1.3.

Learn More About Protein and Antibody Labeling
We offer a wide selection of Molecular Probes® antibody and protein labeling kits to fit your starting material and your experimental setup. See Antibody Labeling from A to Z or use our Labeling Chemistry Selection Tool for other choices. To learn more about our various kits read Kits for Labeling Proteins and Nucleic Acids—Section 1.2 in the Molecular Probes® Handbook.

We’ll Make a Custom Antibody Conjugate for You
If you can’t find what you’re looking for in our stocked list, we’ll prepare a custom antibody conjugate for you. Our custom conjugation service is efficient and confidential, and we stand by the quality of our work. We are ISO 9001:2000 certified.

For Research Use Only. Not intended for animal or human therapeutic or diagnostic use.

Alexa Fluor™ 532 Protein Labeling Kit (Invitrogen™)

Molecular Probes™ Protein Labeling Kits provide a convenient means for attaching a fluorescent label (or biotin) to an antibody (or a protein larger than 40 kDa). Conjugates are ideal for multiple applications, including flow cytometry, fluorescent microscopy, immunohistochemistry, primary detection, ELISAs, immunocytochemistry, FISH, and more. Kits are available in 12 Alexa Fluor™ dye colors, biotin, the hapten Oregon Green™ 488, fluorescein EX, and Texas Red™ dye. Each kit provides the components needed to perform three protein conjugations and purifications.

View a selection guide for all Protein Labeling Kits.

View the Fluorophore Selection Guide.

Important features of protein labeling kits:

• Labeled proteins typically ready to use in 2 hr (~30 min hands-on time)
• Designed to label 1 mg of IgG
• Simple protocol—react, separate, use
• Stabilizing proteins must be removed from the sample before labeling

The benefits of Alexa Fluor™ dyes
Compared to traditional dyes, Alexa Fluor™ dyes are brighter, more photostable, and more pH resistant between pH 4 and 10. And generally when using Alexa Fluor™ dyes, higher degrees of labeling can be achieved without intramolecular quenching.

Learn more about protein and antibody labeling
We offer a wide selection of Molecular Probes™ antibody and protein labeling kits to fit your starting material and your experimental setup. See Antibody Labeling from A to Z or use our Labeling Chemistry Selection Tool for other choices. To learn more about our various kits read Kits for Labeling Proteins and Nucleic Acids—Section 1.2 in the Molecular Probes™ Handbook.

We’ll make a custom antibody conjugate for you
If you can’t find what you’re looking for in our stocked list, we’ll prepare a custom antibody conjugate for you. Our custom conjugation service is efficient and confidential, and we stand by the quality of our work. We are ISO 9001:2000 certified.

Alexa Fluor™ 680 Protein Labeling Kit (Invitrogen™)

Molecular Probes® Protein Labeling Kits provide a convenient means for attaching a fluorescent label (or biotin) to an antibody (or a protein larger than 40 kDa). Conjugates are ideal for multiple applications, including flow cytometry, fluorescent microscopy, immunohistochemistry, primary detection, ELISAs, immunocytochemistry, FISH, and more. Kits are available in 12 Alexa Fluor® dye colors, biotin, the hapten Oregon Green® 488, fluorescein EX, and Texas Red® dye. Each kit provides the components needed to perform three protein conjugations and purifications.

Important Features of Protein Labeling Kits:

• Labeled proteins typically ready to use in 2 hr (~30 min hands-on time)
• Designed to label 1 mg of IgG
• Simple protocol—react, separate, use
• Stabilizing proteins must be removed from the sample before labeling


The Benefits of Alexa Fluor® Dyes
Compared to traditional dyes, Alexa Fluor® dyes are brighter, more photostable, and more pH resistant between pH 4 and 10. And generally when using Alexa Fluor® dyes, higher degrees of labeling can be achieved without intramolecular quenching. For details see Alexa Fluor® Dyes Spanning the Visible and Infrared Spectrum—Section 1.3.

Learn More About Protein and Antibody Labeling
We offer a wide selection of Molecular Probes® antibody and protein labeling kits to fit your starting material and your experimental setup. See Antibody Labeling from A to Z or use our Labeling Chemistry Selection Tool for other choices. To learn more about our various kits read Kits for Labeling Proteins and Nucleic Acids—Section 1.2 in the Molecular Probes® Handbook.

We’ll Make a Custom Antibody Conjugate for You
If you can’t find what you’re looking for in our stocked list, we’ll prepare a custom antibody conjugate for you. Our custom conjugation service is efficient and confidential, and we stand by the quality of our work. We are ISO 9001:2000 certified.

For Research Use Only. Not intended for animal or human therapeutic or diagnostic use.

Pacific Orange™ Protein Labeling Kit (Invitrogen™)

From start to finish, it takes less than three hours to label a protein and purify the resulting conjugate using the Pacific Orange™ Protein Labeling Kit. Although optimized for 1 mg of an IgG antibody, this kit can be used to make conjugates of other proteins larger than ~40,000 daltons. The kit provides sufficient material to perform three protein conjugations and purifications. To label 100 µg of an IgG, we have the Pacific Orange™ Monoclonal Antibody Labeling Kit P30014.

View a selection guide for all Protein Labeling Kits.

View the Fluorophore Selection Guide.

Click-IT™ L-Homopropargylglycine (HPG) (Invitrogen™)

Click-iT® homopropargylglycine (HPG) provides a fast, sensitive, non-toxic and most importantly non-radioactive alternative to the traditional technique,35S methionine for the detection of nascent protein synthesis. HPG is an amino acid analog that contains a very small modification, specifically an alkyne moiety that can be fed to cultured cells and incorporated into proteins during active protein synthesis. Detection utilizes the chemoselective ligation or “click" reaction between and azide and an alkyne where the alkyne modified protein is detected with an azide-containing dye or hapten together with either the Click-iT® Cell Reaction Buffer Kit or the Click-iT® Protein Buffer Kit. With the Click-iT® Cell Reaction Buffer Kit, cells can be analyzed by fluorescence microscopy, flow cytometry or high-content imaging and analysis. With the Click-iT® Protein Reaction Buffer Kit, achieve detection sensitivity in 1-D gels and western blots in the low femtomole range or perform LC-MS⁄MS and MALDI MS analysis.

Click-IT™ GlcNAz Metabolic Glycoprotein Labeling Reagent (tetraacetylated N-Azidoacetylglucosamine) (Invitrogen™)

The Click-iT® GlcNAz metabolic glycoprotein labeling reagent provides the first part of a simple and robust two-step technique to identify and characterize intracellular O-GlcNAc glycoproteins. In step one, cultured cells are incubated with the azide-modified glucosamine (GlcNAc). The azido-sugar is incorporated into intracellular O-GlcNAc-containing glycoproteins through the permissive nature of the oligosaccharide biosynthesis pathway. In step two, via the chemoselective ligation or click reaction between an azide and an alkyne, the azido-labeled glycoproteins can then detected with a Click-iT® Glycoprotein Detection kit for gels (TAMRA or Dapoxyl® alkyne) or Western blots (biotin alkyne). The Click-iT® glycoprotein products are compatible with LC-MS⁄MS and Multiplexed Proteomics™ technologies for in-depth analyses of the glycoproteome.

EZ-Link™ Sulfo NHS-SS Biotinylation Kit (Thermo Scientific™)

The Thermo Scientific EZ-Link Sulfo NHS-SS Biotinylation Kit contains sufficient reagents for 10 biotinylation reactions (e.g., 1–10 mg antibody per reaction). The EZ-Link Sulfo-NHS-SS-Biotin included in the kit is a water-soluble, NHS-ester biotinylation reagent whose spacer arm includes a cleavable disulfide bond for reversible labeling of proteins and cell surface primary amines.

Features of EZ-Link Sulfo-NHS-SS-Biotin:

Protein labeling – biotinylate antibodies to facilitate immobilization, purification or detection
Cell surface labeling – biotinylates only surface proteins of whole cells because the negatively charged reagent does not permeate cell membranes
Amine-reactive—reacts with primary amines (-NH2), such as lysine side-chains, or the amino-termini of polypeptides
Cleavable—disulfide bond in spacer arm allows the biotin label to be removed using reducing agents such as DTT; only a small sulfhydryl group remains attached to the molecule
Soluble – charged sulfo-NHS group increases reagent water solubility compared to ordinary NHS-ester compounds
Medium length—spacer arm (total length added to target) is 24.3 angstroms; it consists of the native biotin valeric acid group extended by a 7-atom chain

Sulfo-NHS-SS-Biotin is a thiol-cleavable amine-reactive biotinylation reagent that contains an extended spacer arm to reduce steric hindrances associated with avidin binding. This reagent is water-soluble, enabling biotinylation to be performed in the absence of organic solvents such as DMSO or DMF for applications that cannot tolerate solvents or are complicated by their inclusion. The compound is particularly useful for labeling and purifying cell surface proteins, because (a) its sulfonate group prevents it from permeating cell membranes and (b) its cleavable spacer arm enables initially biotinylated proteins to be released from streptavidin affinity columns.

We manufacture biotin reagents to ensure the highest possible overall product integrity, consistency, and performance for the intended research applications.

N-Hydroxysulfosuccinimide (NHS) esters of biotin are the most popular type of biotinylation reagent. NHS-activated biotins react efficiently with primary amino groups (-NH2) in alkaline buffers to form stable amide bonds. Proteins (e.g., antibodies) typically have several primary amines that are available as targets for labeling, including the side chain of lysine (K) residues and the N-terminus of each polypeptide.

Varieties of biotin NHS-ester reagents differ in length, solubility, cell permeability and cleavability. Non-sulfonated NHS-biotins are cell permeable but must be dissolved in organic solvent such as DMSO or DMF. Sulfo-NHS biotins (and those with pegylated spacers) are directly water soluble but not membrane permeable. Varieties containing disulfide bonds can be cleaved using reducing agents, enabling the biotin group to be disconnected from the labeled protein.

Related Products
EZ-Link™ Sulfo-NHS-SS-Biotin
EZ-Link™ Micro Sulfo-NHS-SS-Biotinylation Kit

HABA (4'-hydroxyazobenzene-2-carboxylic acid) (Thermo Scientific™)

Thermo Scientific Pierce HABA is 4'-hydroxyazobenzene-2-carboxylic acid, a simple reagent that enables spectrophotometric (colorimetric) estimation of biotinylation levels of labeled proteins and other molecules.

Features of HABA:

• HABA-avidin complex can be used over a wide range of pH and salt concentrations
• Amount of Avidin can be calculated directly from the increased absorbance at 500nm complexing with the HABA Dye
• Calculate results directly from absorbance values based on extinction coefficients using the procedure outlined in the instructions
• Complete kits also available! See Pierce Biotin Quantitation Kit (Part No. 28005) and Fluorescence Biotin Quantitation Kit (Part No. 46610)

Determine the molar ratio of biotin incorporated into a protein using the HABA-Avidin method. HABA dye (4'-hydroxyazobenzene-2-carboxylic acid ) binds to avidin to produce a yellow-orange colored complex which absorbs at 500nm. Free biotin will displace the HABA dye and cause the absorbance to decrease. A standard curve can be established using the free biotin to estimate the number of moles of biotin incorporated after biotinylating a protein. View online HABA Calculator.

Biotin-XX Microscale Protein Labeling Kit (Invitrogen™)

Microscale Protein Labeling Kits provide a convenient means for attaching a fluorescent label to a small amount of antibody or protein (20–100 µg). The kits are available in four Alexa Fluor® colors (or biotin) and supply everything needed for three labeling and separation reactions.

Important Features of Microscale Protein Labeling Kits:

• Labeled proteins typically ready to use typically in 2 hours (~30 minutes hands-on time)
• Optimized for 20–100 µg of protein with molecular weights between 12 and 150 kDa
• Purified using convenient spin filters with yields between 60 and 90%
• Stabilizing proteins must be removed from the sample before labeling


Stable Reaction Chemistry and Superior Alexa Fluor® Dyes
In this Microscale Protein Labeling Kit, the reactive label contains a succinimidyl (NHS) ester moiety that reacts with primary amines of proteins to form stable dye-protein conjugates. Compared to traditional dyes, Alexa Fluor® dyes are brighter, more photostable, and more pH resistant between pH 4 and 10. And generally when using Alexa Fluor® dyes, higher degrees of labeling can be achieved without intramolecular quenching. For details see Alexa Fluor® Dyes Spanning the Visible and Infrared Spectrum—Section 1.3.

Learn More About Protein and Antibody Labeling
We offer a wide selection of Molecular Probes® antibody and protein labeling kits to fit your starting material and your experimental setup. See Antibody Labeling from A to Z or use our Labeling Chemistry Selection Tool for other choices. To learn more about our various kits read Kits for Labeling Proteins and Nucleic Acids—Section 1.2 in the Molecular Probes® Handbook.

We'll Make a Custom Antibody Conjugate for You
If you can't find what you're looking for in our stocked list, we'll prepare a custom antibody conjugate for you. Our custom conjugation service is efficient and confidential, and we stand by the quality of our work. We are ISO 9001:2000 certified.

For Research Use Only. Not intended for animal or human therapeutic or diagnostic use.