Shop All cDNAs & Libraries

LentiArray™ Human Cell Surface CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Cell Surface Protein Library targets 778 genes with up to 4 gRNA per gene target for a total of 3,112 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

The broad array of cell surface proteins allows the cell to receive information from and react to its environment. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human Protease CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Protease Library targets 475 genes with up to 4 gRNA per gene target for a total of 1,900 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

Proteases degrade proteins but are also integral signaling molecules and the deregulation of protease signaling pathways has been implicated in the development of cardiovascular disease, neurological disorders, cancer, and inflammatory disease. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human Tumor Suppressor CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Tumor Suppressor Library targets 716 genes with up to 4 gRNA per gene target for a total of 2,864 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

Tumor suppressors are negative regulators cell cycle progression. Loss or mutation of tumor suppressor genes is often involved in the development of cancer. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC), as well as the Tumor Suppressor Gene Database (TSGene).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human DNA Damage Response CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human DNA Damage Response Library targets 561 genes with up to 4 gRNA per gene target for a total of 2,244 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

DNA surveillance proteins continuously monitor DNA integrity and activate cell cycle checkpoints and DNA repair pathways in response to DNA damage. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human GPCR CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human GPCR Library targets 446 genes with up to 4 gRNA per gene target for a total of 1,784 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

G protein-coupled receptors (GPCRs) are regulators of a wide range of physiological and disease processes. GPCRs have emerged as one of the most druggable classes of genes, with nearly 30% of FDA approved drugs targeting GPCRs. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

95401.H1POOL (yeast deletion pools) (Invitrogen™)

The Yeast Deletion Pools allow simultaneous analysis of large numbers of deletion strains through selective growth conditions. Identification and quantitation of the deletions surviving selection can be determined by hybridizing the deletions to a microarray containing all the barcode oligos (Figure 1). The barcode oligos are unique to each deletion, allowing rapid, high-throughput identification of the deletions. Each Yeast Deletion Pool contains all the deletions within the strain, equally represented within the pool. The set of Yeast Deletion Pools is supplied in five tubes, each containing 200 µl of the pooled deletions.

LentiArray™ Human Nuclear Hormone Receptor CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Nuclear Hormone Receptor Library targets 47 genes with up to 4 gRNA per gene target for a total of 188 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

Nuclear hormone receptors are a family of ligand-activated transcription factors that are activated by lipid-soluble ligands such as steroid hormones, thyroid hormone, vitamin D, and retinoic acid. Nuclear hormone receptors regulate a range of biological processes, including metabolism, development, proliferation, and reproduction. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human Ubiquitin CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Ubiquitin Library targets 943 genes with up to 4 gRNA per gene target for a total of 3,722 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

The ubiquitin system is integral to maintaining cellular homeostasis by regulating protein turnover. Dysregulation of the ubiquitin system has been linked to multiple diseases, including cancer, neurodegenerative, musculoskeletal, cardiovascular, and metabolic diseases, as well as being linked to viral infection. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

95401.H4POOL (yeast deletion pools) (Invitrogen™)

The Yeast Deletion Pools allow simultaneous analysis of large numbers of deletion strains through selective growth conditions. Identification and quantitation of the deletions surviving selection can be determined by hybridizing the deletions to a microarray containing all the barcode oligos (Figure 1). The barcode oligos are unique to each deletion, allowing rapid, high-throughput identification of the deletions. Each Yeast Deletion Pool contains all the deletions within the strain, equally represented within the pool. The set of Yeast Deletion Pools is supplied in five tubes, each containing 200 µl of the pooled deletions.

LentiArray™ Human Druggable CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Druggable Genome Library targets 10,132 genes with up to 4 gRNA per gene target for a total of 40,512 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

The LentiArray Human Druggable Genome Library is ideal for identifying potential therapeutic targets involved in the development and progression of disease. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human Apoptosis CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Apoptosis Library targets 904 genes with up to 4 gRNA per gene target for a total of 3,616 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

Apoptosis is a tightly regulated process that is essential for maintaining homeostasis in multicellular organisms. Inhibition of apoptosis can result in the development of cancer, autoimmune, and inflammatory disease and is involved in viral infection. Conversely, over-activation of apoptosis can lead to atrophy, tissue damage, and neurodegenerative disease. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human Cell Cycle CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Cell Cycle Library targets 1,444 genes with up to 4 gRNA per gene target for a total of 5,776 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

Cell cycle regulators are important to normal development and also play a role in the development of cancer, cardiovascular, inflammatory, and neurodegenerative diseases. The gene targets within the LentiArray Human Cell Cycle Library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC), and include cyclin-dependent kinases, or CDKs, regulators of cell cycle progression such as CIP/KIP family proteins and members of the INK4 family of cell cycle inhibitors, proteins in the retinoblastoma family, and DNA replication factors such as the cell division cycle proteins (CDCs). The gRNA designs for each target were created using Thermo Fisher Scientific's proprietary gRNA design algorithm.

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human Kinase CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Kinase CRISPR Library targets 822 genes with up to 4 gRNA per gene target for a total of 3,288 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

Kinases are involved in almost all signaling cascades, and the dysregulation of kinase activity is linked to the development of numerous diseases, making kinases a key class of drug targets. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC), as well as additional resources, such as the KinBase database.

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human Whole Genome CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Whole Genome Library targets 18,453 genes with up to 4 gRNA per gene target for a total of 73,812 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

The LentiArray Human Whole Genome Library is ideal for whole genome surveys to identify novel targets in biological pathways and disease development. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >

LentiArray™ Human Ion Channel CRISPR Library, Glycerol (Invitrogen™)

The award-winning Invitrogen™ LentiArray™ Human Ion Channel Library targets 328 genes with up to 4 gRNA per gene target for a total of 1,312 gRNAs. Libraries are delivered as 50 μL of glycerol stock per gRNA and are also available as ready to use packaged lentivirus.

Ion channels are integral membrane proteins that establish the electrochemical gradient that gives rise the both the resting membrane potential and the formation of action potentials which are crucial to nerve conduction and heart and muscle contraction, as well as other processes such as insulin release and activation of T-cells. The gene targets within this library were selected using the most up-to-date genome databases, including the NCBI RefSeq database, and cross-referenced to the Gene Ontology Consortium (GO) database and/or the HUGO Gene Nomenclature Committee (HGNC).

Built to bring you success
LentiArray CRISPR libraries are constructed using gRNA designs produced using Thermo Fisher Scientific’s proprietary CRISPR gRNA design algorithm. This algorithm incorporates the latest gRNA design research, as well as our extensive in-house experience, to produce the highest quality designs. The gRNA designs included in the LentiArray CRISPR libraries are selected for maximal editing efficiency and specificity and are designed to knock out all known isoforms of the target gene. For each gene target, up to four high-quality gRNAs are included to help ensure highly efficient knockout of the target gene in a wide array of cell types.

Design and execute your experiments without limitations
LentiArray CRISPR libraries are designed and constructed to give you complete control over your experimental design. They utilize a two-vector design, expressing the Cas9 nuclease and the gRNA off of separate lentiviral constructs, enabling you to dictate when and how the genome editing tools are delivered to your cells.

The LentiArray Cas9 lentivirus construct expresses a human, codon-optimized Cas9 nuclease with a blasticidin-resistance gene under the control of the EF-1α (EFS) promoter. You can choose to co-infect your cells with both the LentiArray gRNA lentiviruses and the Cas9 lentivirus or just the LentiArray Cas9 lentivirus to establish a stable Cas9 expressing cell line. With LentiArray CRISPR libraries you have the freedom to design the experimental approach that best suits your model system and your screening goals.

Furthermore, to minimize restrictions to your experimental design, the gRNA lentiviruses that make up the LentiArray CRISPR libraries do not contain fluorescent markers. This allows reporters of any wavelength to be used with the libraries and expands your ability to perform multiplexed experiments. For challenging cell lines, the LentiArray gRNA lentiviruses contain a puromycin resistance gene that allows enrichment of the population of edited cells and drives stronger phenotypes.

Learn more about LentiArray CRISPR libraries >

Optimize your assay design and have full confidence in your results with LentiArray controls
High quality controls are the cornerstone of a successful screen. The LentiArray CRISPR libraries product line includes a suite of controls to help you quickly develop your assay and give you confidence in defining your hit criteria.

Learn more about LentiArray controls >