Shop All Microscope Replacement Parts

EVOS™ 40X Objective, achromat, LWD, phase-contrast

This achromat objective is ideal for general applications This is a long working distance (LWD) objective that is optimized for the imaging of slides, cell culture dishes and flasks, and microtiter plates. This is also a phase-contrast objective, making it useful for hard-to-see, translucent speciments. All EVOS objectives offer outstanding optical performance from visible light to near infrared light. The extensive choice of objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this EVOS objective:

• Magnification: 40X
• Numerical Aperture: 0.65
• Working Distance: 3.1 mm

Image Quality
Microscope objectives may be the most important components of an optical microscope because they are responsible for primary image formation. Image quality is crucial to experimental success and a requirement for publication; EVOS objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture perfection. EVOS objectives have the same or better numerical apertures as any other manufacturer's in the same class, and the broad selection means you have choices for your imaging requirements.

Objective Classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield Contrast versus Phase Contrast Objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas.

Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long Working Distance versus Coverslip-Corrected Objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS Objectives selection guide
Explore the entire EVOS line of imaging systems and accessories

EVOS™ 20X Objective, fluorite, LWD, 0.45NA/6.23WD Invitrogen™

This fluorite objective is ideal for fluorescence and demanding transmitted-light applications. This is a long working distance (LWD) objective that is optimized for the imaging of slides, cell culture dishes and flasks, and microtiter plates. All EVOS objectives offer outstanding optical performance from visible light to near infrared light. The extensive choice of objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this EVOS objective:

• Magnification: 20X
• Numerical Aperture: 0.45
• Working Distance: 6.23 mm

Image quality
Microscope objectives may be the most important components of an optical microscope because they are responsible for primary image formation. Image quality is crucial to experimental success and a requirement for publication; EVOS objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture perfection. EVOS objectives have the same or better numerical apertures as any other manufacturer's in the same class, and the broad selection means you have choices for your imaging requirements.

Objective classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield contrast versus phase contrast objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas.

Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long working distance versus coverslip-corrected objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS objectives selection guide
Explore the entire EVOS line of imaging systems and accessories

Olympus™ 20X Objective, X-Apo, 0.80NA/0.6WD Thermo Scientific™

This 20X apochromat objective is from the new Olympus X line with exceptional optical performance. Through new manufacturing technology, the X-Apo objectives offer improved performance compared to standard Apo objectives in several critical areas: larger numerical aperture (NA), better image flatness, and a wider range of chromatic correction of 400–1,000 nm. These objectives deliver superb brightness and resolution across a large field of view for applications where the best possible image quality is desired. The Olympus objectives are compatible with all EVOS cell imaging systems. Our wide selection of EVOS and Olympus objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this Olympus objective:
• Magnification: 20X
• Numerical Aperture: 0.8
• Working Distance: 0.6 mm
• Superb image quality

Image quality
Microscope objectives may be the most important components of a microscope because they are responsible for primary image formation. High image quality is crucial to experimental success and often a requirement for publication; Olympus objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture experience, and the broad selection of objectives means that you can choose the optimal objective for your imaging requirements.

Objective classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield contrast versus phase contrast objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas. Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long working distance versus coverslip-corrected objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS objectives selection guide.
Explore the entire EVOS line of imaging systems and accessories ›

EVOS™ 40X Objective, achromat, LWD, phase-contrast, 0.65NA/2.74WD Invitrogen™

This achromat objective is ideal for general applications. This is a long working distance (LWD) objective that is optimized for the imaging of slides, cell culture dishes and flasks, and microtiter plates. This is also a phase-contrast objective, making it useful for hard-to-see, translucent speciments. All EVOS objectives offer outstanding optical performance from visible light to near infrared light. The extensive choice of objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this EVOS objective:

• Magnification: 40X
• Numerical Aperture: 0.65
• Working Distance: 2.74 mm

Image quality
Microscope objectives may be the most important components of an optical microscope because they are responsible for primary image formation. Image quality is crucial to experimental success and a requirement for publication; EVOS objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture perfection. EVOS objectives have the same or better numerical apertures as any other manufacturer's in the same class, and the broad selection means you have choices for your imaging requirements.

Objective classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield contrast versus phase contrast objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas.

Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long working distance versus coverslip-corrected objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS objectives selection guide
Explore the entire EVOS line of imaging systems and accessories

Olympus 10X Objective, super-apochromat, coverslip-corrected

This super-apochromat objective offers exceptional Apo correction from the UV through IR ranges. Parfocal for both visible and IR imaging, it is designed for the most demanding research applications. This is a coverslip-corrected objective that is optimized for imaging through #1.5 coverslips. All Olympus objectives are compatible with EVOS Cell Imaging systems and offer outstanding optical performance from visible light to near infrared light. The extensive choice of EVOS and Olympus objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this Olympus objective:

• Magnification: 10X
• Numerical Aperture: 0.4
• Working Distance: 3.1 mm

Image Quality
Microscope objectives may be the most important components of an optical microscope because they are responsible for primary image formation. Image quality is crucial to experimental success and a requirement for publication. Olympus objectives are widely recognized for their quality and performance across the visible spectrum to near infrared light. The broad selection of EVOS and Olympus objectives means you have a range of options for your imaging requirements.

Objective Classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield Contrast versus Phase Contrast Objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas. Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long Working Distance versus Coverslip-Corrected Objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS & Olympus objectives selection guide
Explore the entire EVOS line of imaging systems and accessories

EVOS™ Arm Rest Kit

The EVOS Arm Rest is designed to help improve precision and reduce fatigue during extended operations, such as cell isolation and tissue culture. It fits on either side of the instrument stage for optimal positioning, and the non-skid surface helps prevent slipping. The EVOS Arm Rest Kit was designed for use with the EVOS XL, FL, and FL Color imaging systems.

Explore the entire EVOS line of imaging systems and accessories.

EVOS™ 10X Objective, fluorite, LWD, phase-contrast, 0.30NA/7.13WD Invitrogen™

This fluorite objective is ideal for fluorescence and demanding transmitted-light applications. This is a long working distance (LWD) objective that is optimized for the imaging of slides, cell culture dishes and flasks, and microtiter plates. This is also a phase-contrast objective, making it useful for hard-to-see, translucent speciments. All EVOS objectives offer outstanding optical performance from visible light to near infrared light. The extensive choice of objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this EVOS objective:

• Magnification: 10X
• Numerical Aperture: 0.30
• Working Distance: 7.13 mm

Image quality
Microscope objectives may be the most important components of an optical microscope because they are responsible for primary image formation. Image quality is crucial to experimental success and a requirement for publication; EVOS objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture perfection. EVOS objectives have the same or better numerical apertures as any other manufacturer's in the same class, and the broad selection means you have choices for your imaging requirements.

Objective classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield contrast versus phase contrast objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas.

Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long working distance versus coverslip-corrected objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS objectives selection guide
Explore the entire EVOS line of imaging systems and accessories

EVOS™ 100X Oil Objective, achromat, coverslip-corrected

This achromat objective is ideal for general applications. This is a coverslip-corrected objective that is optimized for imaging through #1.5 coverslips. All EVOS objectives offer outstanding optical performance from visible light to near infrared light. The extensive choice of objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this EVOS objective:

• Magnification: 100X
• Numerical Aperture: 1.25
• Working Distance: 0.15 mm
• Immersion: Oil

Image Quality
Microscope objectives may be the most important components of an optical microscope because they are responsible for primary image formation. Image quality is crucial to experimental success and a requirement for publication; EVOS objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture perfection. EVOS objectives have the same or better numerical apertures as any other manufacturer's in the same class, and the broad selection means you have choices for your imaging requirements.

Objective Classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield Contrast versus Phase Contrast Objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas. Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long Working Distance versus Coverslip-Corrected Objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS Objectives selection guide
Explore the entire EVOS line of imaging systems and accessories

EVOS™ 40X Objective, fluorite, LWD, 0.65NA/1.79WD Invitrogen™

This fluorite objective is ideal for fluorescence and demanding transmitted-light applications. This is a long working distance (LWD) objective that is optimized for the imaging of slides, cell culture dishes and flasks, and microtiter plates. All EVOS objectives offer outstanding optical performance from visible light to near infrared light. The extensive choice of objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this EVOS objective:

• Magnification: 40X
• Numerical Aperture: 0.65
• Working Distance: 1.79 mm

Image quality
Microscope objectives may be the most important components of an optical microscope because they are responsible for primary image formation. Image quality is crucial to experimental success and a requirement for publication; EVOS objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture perfection. EVOS objectives have the same or better numerical apertures as any other manufacturer's in the same class, and the broad selection means you have choices for your imaging requirements.

Objective classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield contrast versus phase contrast objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas.

Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long working distance versus coverslip-corrected objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS objectives selection guide
Explore the entire EVOS line of imaging systems and accessories

EVOS™ 4X Objective, fluorite, LWD, 0.13NA/10.58WD Invitrogen™

This fluorite objective is ideal for fluorescence and demanding transmitted-light applications. This is a long working distance (LWD) objective that is optimized for the imaging of slides, cell culture dishes and flasks, and microtiter plates. All EVOS objectives offer outstanding optical performance from visible light to near infrared light. The extensive choice of objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this EVOS objective:

• Magnification: 4X
• Numerical Aperture: 0.13
• Working Distance: 10.58 mm

Image quality
Microscope objectives may be the most important components of an optical microscope because they are responsible for primary image formation. Image quality is crucial to experimental success and a requirement for publication; EVOS objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture perfection. EVOS objectives have the same or better numerical apertures as any other manufacturer's in the same class, and the broad selection means you have choices for your imaging requirements.

Objective classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield contrast versus phase contrast objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas.

Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long working distance versus coverslip-corrected objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS objectives selection guide
Explore the entire EVOS line of imaging systems and accessories

FLoid™ Printer Ink/Paper Applied Biosystems™

Replacement color and ink paper set for the FLoid® Cell Imaging Station-compatible printer.

• All-in-one color ink cartridge and labels compatible with the FLoid® printer
• Color ink and label set produces credit card size label
• Adhesive back can be attached to your lab notebook
• Includes 18 sheets of credit card size dye sub labels
• Includes color ink ribbon for 18 prints

Print Beautiful, Borderless Credit Card Sized Photos in Vibrant Colors
Replacement color and ink paper set for the compact photo printer is optimal for the FLoid® cell imaging station (SKU # 44472351), which prints photo lab quality images of your fluorescently labeled samples in under a minute. The sticker-based backing allows you to paste directly into your lab notebook.

The prints will be water-resistant and can last up to 100 years! You'll enjoy photo lab quality and have fun all at the same time.

Olympus™ 40X Objective, X-Apo, 0.95NA/0.18WD, correction collar (0.11-0.23 mm) Thermo Scientific™

This 40X apochromat objective is from the new Olympus X line with exceptional optical performance. It is equipped with an adjustable collar that affords flexibility in imaging through cover glass with a thickness from 0.11 to 0.23 mm. Through new manufacturing technology, the X-Apo objectives offer improved performance compared to standard Apo objectives in several critical areas: larger numerical aperture (NA), better image flatness, and a wider range of chromatic correction of 400–1,000 nm. These objectives deliver superb brightness and resolution across a large field of view for applications where the best possible image quality is desired. The Olympus objectives are compatible with all EVOS cell imaging systems. Our wide selection of EVOS and Olympus objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this Olympus objective:
• Magnification: 40X
• Numerical Aperture: 0.95
• Working Distance: 0.18 mm
• Superb image quality

Image quality
Microscope objectives may be the most important components of a microscope because they are responsible for primary image formation. High image quality is crucial to experimental success and often a requirement for publication; Olympus objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture experience, and the broad selection of objectives means that you can choose the optimal objective for your imaging requirements.

Objective classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield contrast versus phase contrast objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas. Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long working distance versus coverslip-corrected objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS objectives selection guide.
Explore the entire EVOS line of imaging systems and accessories ›

EVOS™ Light Cube, Cy™7

All EVOS fluorescence imaging systems and the Countess II FL Automated Cell Counter contain our unique, proprietary LED light cubes. This world-leading light engine outputs remarkable intensity over a short light path that delivers superior fluorophore excitation. Each cube contains an LED, condensing optics, and hard-coated filters. EVOS light cubes are user-changeable and automatically recognized by the system. The Cy7 light cube is ideal for use with Cy7, Alexa Fluor 750, DyLight 750 and other fluorophores with excitation and emission maxima near 710 and 775 nm.

EVOS light cubes offers you these important advantages:

• A shorter light path that affords superior detection of fluorescent signals
• Continuous illumination that enables consistent results
• A 50,000+ hour bulb lifetime that affords lower operating costs
• Adjustable light intensity that helps reduce photobleaching

Revolutionary Light Path
By placing the LED light cube as close as possible to the objective turret, the number of optical elements in the light path is minimized. High-intensity illumination over a short light path increases the efficiency of fluorophore excitation, providing better detection of weak fluorescent signals.

Continuous Light Intensity
Mercury arc lamps can decrease in intensity by 50% in the first 100 hours of operation—plus, images acquired in different sessions cannot be quantitatively compared using mercury illumination without complicated calibrations. Because EVOS systems have continuous light cube intensity, users can rely on consistent illumination and can compare quantitative results from images acquired on different days. Each light cube contains a precisely matched set of optical components to optimize the position, evenness, and intensity of the light beam. Digitally controlled LED light sources allow adjustment of illumination levels, dramatically improving control over photobleaching.

Less Expensive to Own and Maintain
The LED bulbs on the EVOS systems are rated for >50,000 hours (~17 years), compared to 300 hours for a typical mercury bulb and 1,500 hours for a metal halide bulb. This translates to savings in the overall upkeep of your instrument.

EVOS Hard-coated Filter Sets for Higher Transmission Efficiencies
Hard-coated filter sets are more expensive that soft-coated filters, but they have sharper edges and significantly higher transmission efficiencies that typically result in >25% more light transmission than traditional soft-coated filters. With the EVOS systems' hard-coated filter sets, your light cubes cost less over time. Plus, you will have brighter fluorescence, higher transmission efficiencies, the ability to detect faint fluorescence signals, and better signal-to-noise ratios.

To select the light cube best suited for your experiments, see the Light Cube selection guide.
Explore the entire EVOS line of imaging systems and accessories.

Olympus™ 20X Objective, fluorite, 0.45NA/6.6–7.8WD, correction collar (0–2.0 mm) Invitrogen™

This fluorite (semi-apochromat) objective is equipped with an adjustable collar that affords flexibility in imaging through vessels with a thickness from 0 (no coverslip) to 2.0 mm. With four-color correction for spherical and chromatic aberrations, it delivers exceptional image quality. For the sharpest image simply set the collar to the thickness of the vessel/coverslip you are using. If the thickness is unknown, turn the collar in either direction while monitoring the sample focus. All Olympus objectives are compatible with EVOS cell imaging systems and offer outstanding optical performance from visible to near-infrared light. The extensive selection of EVOS and Olympus objectives satisfies needs across the spectrum of magnifications and optical specifications.

Additional characteristics of this Olympus objective:
• Magnification: 20X
• Numerical Aperture: 0.45
• Working Distance: 6.6–7.8 mm
• Superb image quality

Image quality
Microscope objectives may be the most important components of a microscope because they are responsible for primary image formation. High image quality is crucial to experimental success and often a requirement for publication; Olympus objectives afford that quality across the visible spectrum to near infrared light. This performance results from years of lens manufacture experience, and the broad selection of objectives means that you can choose the optimal objective for your imaging requirements.

Objective classes

Achromat objectives are perfect for general applications, with standard correction of color and focus.

Fluorite objectives deliver excellent resolution and are made with higher numerical apertures than achromat objectives, resulting in brighter fluorescence signal and higher contrast imaging. The higher optical quality greatly reduces optical aberrations, and corrections for color and focus are at higher levels than achromat objectives. Fluorite objectives are ideally suited for fluorescence and demanding transmitted light applications, where the higher contrast make them ideally suited for color imaging.

Apochromat objectives are manufactured to the highest levels of resolution, fluorescence brightness, and contrast; chromatic aberrations are almost eliminated. They are recommended for the most demanding applications, particularly at magnifications of 60x and above. Apochromatic objectives are the best choice for the capture of color images in white light.

Brightfield contrast versus phase contrast objectives
Brightfield is the most basic form of light microscopy and is accomplished by sample absorption of light. A higher density area in a sample will absorb more light, thus increasing contrast in those areas. Phase contrast objectives are most useful for hard to see, translucent specimens. This method of contrast is accomplished by converting phase shifts, caused by light passing through a translucent specimen, into brightness changes (i.e., contrast).

Long working distance versus coverslip-corrected objectives
Long working distance (LWD) objectives are optimized for use through vessels with a nominal wall thickness of 0.9-1.5 mm. This includes vessels commonly used in cell culture and cell-based assays, such as slides, cell culture dishes and flasks, microtiter well plates, etc. Coverslip-corrected objectives are optimized for use through #1.5 coverslips (thickness approximately 0.17 mm). These objectives have a higher magnification/NA ratio and provide higher resolution compared to LWD objectives.

For additional choices, visit the EVOS objectives selection guide.
Explore the entire EVOS line of imaging systems and accessories ›

EVOS™ Light Cube, CFP

All EVOS fluorescence imaging systems and the Countess II FL Automated Cell Counter contain our unique, proprietary LED light cubes. This world-leading light engine outputs remarkable intensity over a short light path that delivers superior fluorophore excitation. Each cube contains an LED, condensing optics, and hard-coated filters. EVOS light cubes are user-changeable and automatically recognized by the system. The CFP light cube is ideal for use with CellLight CFP, ECFP, Evans Blue, Lucifer Yellow and other fluorophores with excitation and emission maxima near 445 and 510 nm.

EVOS light cubes offers you these important advantages:

• A shorter light path that affords superior detection of fluorescent signals
• Continuous illumination that enables consistent results
• A 50,000+ hour bulb lifetime that affords lower operating costs
• Adjustable light intensity that helps reduce photobleaching

Revolutionary Light Path
By placing the LED light cube as close as possible to the objective turret, the number of optical elements in the light path is minimized. High-intensity illumination over a short light path increases the efficiency of fluorophore excitation, providing better detection of weak fluorescent signals.

Continuous Light Intensity
Mercury arc lamps can decrease in intensity by 50% in the first 100 hours of operation—plus, images acquired in different sessions cannot be quantitatively compared using mercury illumination without complicated calibrations. Because EVOS systems have continuous light cube intensity, users can rely on consistent illumination and can compare quantitative results from images acquired on different days. Each light cube contains a precisely matched set of optical components to optimize the position, evenness, and intensity of the light beam. Digitally controlled LED light sources allow adjustment of illumination levels, dramatically improving control over photobleaching.

Less Expensive to Own and Maintain
The LED bulbs on the EVOS systems are rated for >50,000 hours (~17 years), compared to 300 hours for a typical mercury bulb and 1,500 hours for a metal halide bulb. This translates to savings in the overall upkeep of your instrument.

EVOS Hard-coated Filter Sets for Higher Transmission Efficiencies
Hard-coated filter sets are more expensive that soft-coated filters, but they have sharper edges and significantly higher transmission efficiencies that typically result in >25% more light transmission than traditional soft-coated filters. With the EVOS systems' hard-coated filter sets, your light cubes cost less over time. Plus, you will have brighter fluorescence, higher transmission efficiencies, the ability to detect faint fluorescence signals, and better signal-to-noise ratios.

To select the light cube best suited for your experiments, see the Light Cube selection guide.
Explore the entire EVOS line of imaging systems and accessories.
Results per page
    spinner