Before selecting an online slurry analysis system, consider if light elements will need to be measured and if the measurement technique is amenable, given the expected variation in mineralogical and particle size for the process. In addition, look at the streams to be measured and ask these questions:
- What is critical for control of process (usually includes Feed, Final Tail, and Concentrate)?
- Is there a need for understanding trends within the process (usually includes Rougher Concentrate and Cleaner Tails)?
- What are the elements to be measured in each stream?
Based on this information, the various trade-offs taking into account all factors between centralized and dedicated analyzers, Prompt Gamma Neutron Activation Analysis (PGNAA) and X-ray fluorescence (XRF), capital and maintenance cost etc., can be worked out and a recommendation made for the optimum system configuration for the particular plant
For example, in a nickel concentrator, it is essential to control the concentration of talc (or MgO) in the concentrate stream. To be able to control the concentration of talc in the concentrate, one requires measurement of Ni and talc in each of the feeds, rougher concentrate, and final concentrate streams so that the appropriate concentration gradients between these can be optimized and the ratio of Ni/talc can be maximized at each stage for minimum reagent usage. It may also be useful to measure Fe and S in the feed stream because this may give an indication of the nickel mineralogy entering the plant. In all other streams, it is only necessary to measure Ni because the information from these streams is used only for monitoring the recovery of Ni. Thus, PGNAAA would be required with multiplexing for the three main streams, and possibly a multi-stream analyzer (using XRF technology) for the other streams).
Answer Id: E20199
Yes
No
Thank you for your response