With an ever-increasing world population and global travel on the rise, infectious diseases cover more ground, spreading faster and more efficiently, leading to an increase in pandemic threats. Besides preventative (quarantine) measures, it is critical to combat diseases directly through the development of new antibiotics and/or efficient vaccines.
Particularly for viruses, determining the 3D outer shell structure can be vital, as that is where neutralizing antibodies interact with the pathogen. Cryo-electron microscopy (cryo-EM) techniques, such as single particle analysis (SPA), cryo electron tomography (cryo-ET), and micro electron diffraction (MicroED), allow multiscale observation of these biological structures in their near-native states. With the full 3D structure, treatments can be motivated by observations on the molecular scale, greatly increasing specificity and overall success.
Thermo Fisher Scientific’s cryo-EM solutions are specially designed to deliver this vital information, leading to faster and more efficient development of therapeutics.
Proteins Analysis
Cryo-electron microscopy provides near-atomic resolution 3D protein structure. It can determine structural information for complexes and crystallization-resistant samples, as well as vital cellular context.
Biopharmaceutical Research
Structural drug discovery is enabled by cryo-electron microscopy, as the method provides near-atomic-resolution detail for small molecules and protein biologics in their fully hydrated state.
Virus Analysis
Cryo-EM enables the 3D structural visualization of virus particles, and the antigen-antibody interface, at near-atomic resolutions. A virus’s inherent structural symmetry makes it the ideal target for cryo-EM analysis.
Single Particle Analysis
Single particle analysis (SPA) is a cryo-electron microscopy technique that enables structural characterization at near-atomic resolutions, unraveling dynamic biological processes and the structure of biomolecular complexes/assemblies.
Cryo-Tomography
Cryo-electron tomography (cryo-ET) delivers both structural information about individual proteins as well as their spatial arrangements within the cell. This makes it a truly unique technique and also explains why the method has such an enormous potential for cell biology. Cryo-ET can bridge the gap between light microscopy and near-atomic-resolution techniques like single-particle analysis.
MicroED
MicroED is an exciting new technique with applications in the structural determination of small molecules and protein. With this method, atomic details can be extracted from individual nanocrystals (<200 nm in size), even in a heterogeneous mixture.
Single Particle Analysis
Single particle analysis (SPA) is a cryo-electron microscopy technique that enables structural characterization at near-atomic resolutions, unraveling dynamic biological processes and the structure of biomolecular complexes/assemblies.
Cryo-Tomography
Cryo-electron tomography (cryo-ET) delivers both structural information about individual proteins as well as their spatial arrangements within the cell. This makes it a truly unique technique and also explains why the method has such an enormous potential for cell biology. Cryo-ET can bridge the gap between light microscopy and near-atomic-resolution techniques like single-particle analysis.
MicroED
MicroED is an exciting new technique with applications in the structural determination of small molecules and protein. With this method, atomic details can be extracted from individual nanocrystals (<200 nm in size), even in a heterogeneous mixture.