The Thermo Scientific Helios G4 Plasma FIB (PFIB) DualBeam (focused ion beam scanning electron microscope, or FIB-SEM) delivers unmatched capabilities for large-volume 3D characterization, gallium-free sample preparation and precise micromachining, and is part of the fourth generation of the industry-leading Helios DualBeam family. It combines the new PFIB column and the Thermo Scientific Monochromated Elstar SEM Column to deliver advanced focused-ion- and electron-beam performance. Intuitive software and an unprecedented level of automation and ease-of-use enable you to observe and analyze relevant subsurface volumes.

Key Features

Next-generation 2.5 μA xenon plasma FIB column

High-throughput, high-quality, relevant 3D characterization, cross-sectioning and micromachining using next generation 2.5 μA Xenon Plasma FIB column.

Multi-modal subsurface and 3D information

Access high-quality, multi-modal subsurface and 3D information with precise targeting of the region of interest using optional Thermo Scientific Auto Slice & View 4 Software (AS&V4).

Gallium-free STEM and TEM sample preparation

High-quality, gallium-free STEM and TEM sample preparation thanks to the superior performance of the PFIB at all operating conditions and automation of the TEM sample preparation workflow with Thermo Scientific AutoTEM Software.

Sub-nanometer performance at low energies

Reveal the finest details using best-in-class Elstar electron column with high-current UC+ monochromator technology, enabling sub-nanometer performance at low energies.

Complete sample information

The most complete sample information with sharp, refined, and charge-free contrast obtained from up to 6 integrated in-column and below-the-lens detectors.

Advanced capabilities

Advanced capabilities for electron- and ion-beam-induced deposition and etching on FIB/SEM systems with optional MultiChem or GIS gas delivery systems.

Precise sample navigation

Tailored to individual application needs thanks to the high stability and accuracy of the 150 mm Piezo stage or the flexible 110 mm stage and optional in-chamber Thermo Scientific Nav-Cam Camera.

Artifact-free imaging

Based on integrated sample cleanliness management and dedicated imaging modes such as SmartScan and DCFI.


Specifications

Style Sheet for Products Table Specifications
  Helios G4 PFIB CXe Helios G4 PFIB UXe
Stage and sample

Flexible 5-axis motorized stage:

  • XY range: 110 mm
  • Z range: 65 mm
  • Rotation: 360° (endless)
  • Tilt range: -38° to +90°
  • XY repeatability: 3 μm
  • Max sample height: Clearance 85 mm to eucentric point
  • Max sample weight at 0° tilt: 2 kg (including sample holder)
  • Max sample size: 110 mm with full rotation (larger samples possible with limited rotation)
  • Compucentric rotation and tilt

High precision 5-axis motorized stage, with XYR axis piezo driven

  • XY range: 150 mm
  • Z range: 10 mm
  • Rotation: 360° (endless)
  • Tilt range: -38° to +60°
  • XY repeatability: 1 μm
  • Max sample height: Clearance 55 mm to eucentric point
  • Max sample weight at 0° tilt: 500 g (including sample holder)
  • Max sample size: 150 mm with full rotation (larger samples possible with limited rotation)
  • Compucentric rotation and tilt
Electron optics
  • Elstar extreme high-resolution field emission SEM column with:
    • Immersion magnetic objective lens
    • High-stability Schottky field emission gun to provide stable high-resolution analytical currents
    • UC+ monochromator technology
Electron beam resolution
  • At working distance (WD):
    • 0.7 nm at 1 kV
    • 1.0 nm at 500 V (ICD) 
  • At coincident point:
    • 0.6 nm at 15 kV
    • 1.2 nm at 1 kV
Electron beam parameter space
  • Electron beam current range: 0.8 pA to 100 nA
  • Accelerating voltage range: 200 V – 30 kV
  • Landing energy range: 20* eV – 30 keV
  • Maximum horizontal field width: 2.3 mm at 4 mm WD
Ion optics
  • Ion beam current range: 1.5 pA to 2.5 µA
  • Accelerating voltage range: 2 kV - 30 kV
  • Maximum horizontal field width: 0.9mm at beam coincidence point Ion beam resolution at coincident point
  • <20 nm at 30 kV using preferred statistical method
  • <10 nm at 30 kV using selective edge method
Detectors
  • Elstar in-lens SE/BSE detector (TLDSE, TLD-BSE)
  • Elstar in-column SE/BSE detector (ICD)*
  • Everhart-Thornley SE detector (ETD)
  • IR camera for viewing sample/column
  • High-performance ion conversion and electron (ICE) detector for secondary ions (SI) and electrons (SE)
  • In-chamber Nav-Cam sample navigation camera*
  • Retractable low voltage, high contrast directional solid-state backscatter electron detector (DBS)*
  • Integrated beam current measurement
Style Sheet for Techniques (LONG VERSION) and Media Gallery Tab
3D EBSD reconstruction of Zircalloy sample.
3D EBSD reconstruction of zircalloy sample (250 x 250 x 220 µm³) produced with he Helios G4 PFIB DualBeam, AS&V4 Software, and Thermo Scientific Avizo Software.
Cross section for scratch testing and adhesion in paint coatings.
500 μm wide cross section for scratch testing and adhesion in paint coatings.

Webinar: Advanced DualBeam automation for every need

Register for our exclusive webinar to learn how easy it has become to automate daily routine tasks on your DualBeam instrument using our Python-based AutoScript 4 API. Automation can also increase throughput, reproducibility and ease of use, quicken time to data and boost efficiency.

Register to watch

3D EBSD reconstruction of Zircalloy sample.
3D EBSD reconstruction of zircalloy sample (250 x 250 x 220 µm³) produced with he Helios G4 PFIB DualBeam, AS&V4 Software, and Thermo Scientific Avizo Software.
Cross section for scratch testing and adhesion in paint coatings.
500 μm wide cross section for scratch testing and adhesion in paint coatings.

Webinar: Advanced DualBeam automation for every need

Register for our exclusive webinar to learn how easy it has become to automate daily routine tasks on your DualBeam instrument using our Python-based AutoScript 4 API. Automation can also increase throughput, reproducibility and ease of use, quicken time to data and boost efficiency.

Register to watch

Applications

Process&#x20;Control_Thumb_274x180_144DPI

Process Control
 

Modern industry demands high throughput with superior quality, a balance that is maintained through robust process control. SEM and TEM tools with dedicated automation software provide rapid, multi-scale information for process monitoring and improvement.

 

Quality&#x20;Control_Thumb_274x180_144DPI

Quality Control
 

Quality control and assurance are essential in modern industry. We offer a range of EM and spectroscopy tools for multi-scale and multi-modal analysis of defects, allowing you to make reliable and informed decisions for process control and improvement.

 

Fundamental&#x20;Materials&#x20;Research_R&amp;D_Thumb_274x180_144DPI

Fundamental Materials Research

Novel materials are investigated at increasingly smaller scales for maximum control of their physical and chemical properties. Electron microscopy provides researchers with key insight into a wide variety of material characteristics at the micro- to nano-scale.

 

S/TEM Sample Preparation

DualBeam microscopes enable the preparation of high-quality, ultra-thin samples for S/TEM analysis. Thanks to advanced automation, users with any experience level can obtain expert-level results for a wide range of materials.

Learn more ›

3D Materials Characterization

Development of materials often requires multi-scale 3D characterization. DualBeam instruments enable serial sectioning of large volumes and subsequent SEM imaging at nanometer scale, which can be processed into high-quality 3D reconstructions of the sample.

Learn more ›

APT Sample Preparation

Atom probe tomography (APT) provides atomic-resolution 3D compositional analysis of materials. Focused ion beam (FIB) microscopy is an essential technique for high-quality, orientation, and site-specific sample preparation for APT characterization.

Learn more ›

Cross-sectioning

Cross sectioning provides extra insight by revealing sub-surface information. DualBeam instruments feature superior focused ion beam columns for high-quality cross sectioning. With automation, unattended high-throughput processing of samples is possible.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›

S/TEM Sample Preparation

DualBeam microscopes enable the preparation of high-quality, ultra-thin samples for S/TEM analysis. Thanks to advanced automation, users with any experience level can obtain expert-level results for a wide range of materials.

Learn more ›

3D Materials Characterization

Development of materials often requires multi-scale 3D characterization. DualBeam instruments enable serial sectioning of large volumes and subsequent SEM imaging at nanometer scale, which can be processed into high-quality 3D reconstructions of the sample.

Learn more ›

APT Sample Preparation

Atom probe tomography (APT) provides atomic-resolution 3D compositional analysis of materials. Focused ion beam (FIB) microscopy is an essential technique for high-quality, orientation, and site-specific sample preparation for APT characterization.

Learn more ›

Cross-sectioning

Cross sectioning provides extra insight by revealing sub-surface information. DualBeam instruments feature superior focused ion beam columns for high-quality cross sectioning. With automation, unattended high-throughput processing of samples is possible.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›


Contact us

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

Learn more ›

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards