The Thermo Scientific Talos F200X Scanning/Transmission Electron Microscope (STEM) combines outstanding high-resolution S/TEM and TEM imaging with industry-leading energy dispersive X-ray spectroscopy (EDS) signal detection and 3D chemical characterization with compositional mapping using 4 in-column SDD Super-X detectors with unique cleanliness. The Talos F200X S/TEM allows for the fastest and most precise EDS analysis in all dimensions, along with HRTEM high-resolution TEM and SEM (HRTEM and HRSTEM) imaging with fast navigation for dynamic microscopy. The Talos F200 S/TEM also features reduced environmental sensitivity; the instrument enclosure moderates the impact of air pressure waves, air flows, and fine temperature variations in the TEM room.

High resolution and throughput in STEM imaging and chemical analysis

The Talos F200X S/TEM delivers fast, precise, quantitative characterization of nanomaterials in multiple dimensions. With innovative features designed to increase throughput, precision, and ease of use, the Talos F200X S/TEM is ideal for advanced research and analysis across academic, government, and industrial research environments.

The need for large area correlative imaging at high resolution has recently increased as it allows researchers to preserve the context of their observations while also providing statistically robust data. Thermo Scientific Maps Software (enabled by Thermo Scientific Velox Software) automatically acquires an array of images across a sample and stitches them together to create one large final image. Image acquisition can even be performed unattended.

Thermo Scientific Avizo Software allows researchers to perform image analysis via automated workflows for on-the-fly processing and the generation of statistics such as size, surface area, perimeter, distribution, and chemical composition of nanoparticles. Images and chemical information from different microscopes can be correlated to keep the relevant context.

Key Features

Intuitive Software

Thermo Scientific Velox Software offers fast and easy acquisition and analysis of multimodal data.

Faster time to chemical composition

Rapid, precise quantitative EDS analysis reveals nanoscale details in 2D and 3D with high cleanliness.

Better image data

High throughput STEM imaging with simultaneous, multiple signal detection delivers better contrast for high quality images.

Maps Software

Automated large area image and analytical data acquisitions at high resolution with on-the-fly processing.

Space for more

Add application-specific in situ sample holders for dynamic experiments.


Specifications

Style Sheet for Products Table Specifications
HRTEM line resolution
  • 0.10
HRSTEM [nm]
  • 0.16
Brightness of X-FEG
  • 1.8 × 109 A /cm2 srad (@200kV)
Super-X EDS system
  • 4 SDD symmetric design, windowless, shutter-protected
Energy resolution
  • ≤136 eV for Mn-Kα and 10 kcps (output)
Style Sheet for Techniques (LONG VERSION) and Media Gallery Tab

Applications

Process Control_Thumb_274x180_144DPI

Process Control
 

Modern industry demands high throughput with superior quality, a balance that is maintained through robust process control. SEM and TEM tools with dedicated automation software provide rapid, multi-scale information for process monitoring and improvement.

 

Quality Control_Thumb_274x180_144DPI

Quality Control
 

Quality control and assurance are essential in modern industry. We offer a range of EM and spectroscopy tools for multi-scale and multi-modal analysis of defects, allowing you to make reliable and informed decisions for process control and improvement.

 

Fundamental Materials Research_R&D_Thumb_274x180_144DPI

Fundamental Materials Research

Novel materials are investigated at increasingly smaller scales for maximum control of their physical and chemical properties. Electron microscopy provides researchers with key insight into a wide variety of material characteristics at the micro- to nano-scale.

 

3D Materials Characterization

Development of materials often requires multi-scale 3D characterization. DualBeam instruments enable serial sectioning of large volumes and subsequent SEM imaging at nanometer scale, which can be processed into high-quality 3D reconstructions of the sample.

Learn more ›

Energy Dispersive Spectroscopy

Energy dispersive spectroscopy (EDS) collects detailed elemental information along with electron microscopy images, providing critical compositional context for EM observations. With EDS, chemical composition can be determined from quick, holistic surface scans down to individual atoms.

Learn more ›

3D EDS Tomography

Modern materials research is increasingly reliant on nanoscale analysis in three dimensions. 3D characterization, including compositional data for full chemical and structural context, is possible with 3D EM and energy dispersive X-ray spectroscopy.

Learn more ›

EDS Elemental Analysis

EDS provides vital compositional information to electron microscope observations. In particular, our unique Super-X and Dual-X Detector Systems add options for enhanced throughput and/or sensitivity, allowing you to optimize data acquisition to meet your research priorities.

Learn more ›

Atomic-Scale Elemental Mapping with EDS

Atomic-resolution EDS provides unparalleled chemical context for materials analysis by differentiating the elemental identity of individual atoms. When combined with high-resolution TEM, it is possible to observe the precise organization of atoms in a sample.

Learn more ›

Electron Energy Loss Spectroscopy

Materials science research benefits from high-resolution EELS for a wide range of analytical applications. This includes high-throughput, high signal-to-noise-ratio elemental mapping, as well as probing of oxidation states and surface phonons.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Particle analysis

Particle analysis plays a vital role in nanomaterials research and quality control. The nanometer-scale resolution and superior imaging of electron microscopy can be combined with specialized software for rapid characterization of powders and particles.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›

3D Materials Characterization

Development of materials often requires multi-scale 3D characterization. DualBeam instruments enable serial sectioning of large volumes and subsequent SEM imaging at nanometer scale, which can be processed into high-quality 3D reconstructions of the sample.

Learn more ›

Energy Dispersive Spectroscopy

Energy dispersive spectroscopy (EDS) collects detailed elemental information along with electron microscopy images, providing critical compositional context for EM observations. With EDS, chemical composition can be determined from quick, holistic surface scans down to individual atoms.

Learn more ›

3D EDS Tomography

Modern materials research is increasingly reliant on nanoscale analysis in three dimensions. 3D characterization, including compositional data for full chemical and structural context, is possible with 3D EM and energy dispersive X-ray spectroscopy.

Learn more ›

EDS Elemental Analysis

EDS provides vital compositional information to electron microscope observations. In particular, our unique Super-X and Dual-X Detector Systems add options for enhanced throughput and/or sensitivity, allowing you to optimize data acquisition to meet your research priorities.

Learn more ›

Atomic-Scale Elemental Mapping with EDS

Atomic-resolution EDS provides unparalleled chemical context for materials analysis by differentiating the elemental identity of individual atoms. When combined with high-resolution TEM, it is possible to observe the precise organization of atoms in a sample.

Learn more ›

Electron Energy Loss Spectroscopy

Materials science research benefits from high-resolution EELS for a wide range of analytical applications. This includes high-throughput, high signal-to-noise-ratio elemental mapping, as well as probing of oxidation states and surface phonons.

Learn more ›

In Situ experimentation

Direct, real-time observation of microstructural changes with electron microscopy is necessary to understand the underlying principles of dynamic processes such as recrystallization, grain growth, and phase transformation during heating, cooling, and wetting.

Learn more ›

Particle analysis

Particle analysis plays a vital role in nanomaterials research and quality control. The nanometer-scale resolution and superior imaging of electron microscopy can be combined with specialized software for rapid characterization of powders and particles.

Learn more ›

Multi-scale analysis

Novel materials must be analyzed at ever higher resolution while retaining the larger context of the sample. Multi-scale analysis allows for the correlation of various imaging tools and modalities such as X-ray microCT, DualBeam, Laser PFIB, SEM and TEM.

Learn more ›


Contact us

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

Learn more ›

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards