The Thermo Scientific™ Nexsa™ X-Ray Photoelectron Spectrometer (XPS) System offers fully automated, high-throughput surface analysis, delivering the data to advance research and development or to solve production problems. Integration of multiple analytical techniques, such as ion scattering spectroscopy (ISS), UV photoelectron spectroscopy (UPS), reflected electron energy loss spectroscopy (REELS), and Raman spectroscopy, allows you to conduct true correlative analysis, unlocking the potential for further advances in microelectronics, ultra-thin films, nanotechnology development, and many other applications.

Webinar: Thermo Scientific Nexsa Surface Analysis System

Key Features

High-performance X-ray source

High-performance X-ray source

A new, low-power X-ray monochromator allows selection of the analysis area from 10 µm to 400 µm in 5 µm steps, ensuring data is collected from the feature of interest while maximizing the signal.

Optimized electron optics

Optimized electron optics

The high-efficiency electron lens, hemispherical analyzer, and detector allow for superb detectability and rapid data acquisition.

Sample viewing

Sample viewing

Bring sample features into focus with the Nexsa XPS System's patented optical viewing system and XPS SnapMap, which helps you pinpoint areas of interest quickly using a fully focused XPS image. 

Insulator analysis

Insulator analysis

The patented dual-beam flood source couples low-energy ion beams with very low-energy electrons (less than 1 eV) to prevent sample charging during analysis, which eliminates the need for charge referencing, making the analysis of the data from insulating samples easy and reliable. 

Depth profiling

Depth profiling

Go beyond the surface with a standard ion source or MAGCIS, the optional dual-mode monatomic and gas cluster ion source; automated source optimization and gas handling ensure excellent performance and experimental reproducibility.

Optional sample holders

Optional sample holders

Specialist sample holders for angel-resolved XPS, sample bias measurements, or for inert transfer from a glove box are available.

Digital Control

Digital Control

Instrument control, data processing, and reporting are all controlled from the Windows Software-based Avantage data system. 


Specifications

Style Sheet for Products Table Specifications
Analyzer type
  • 180°, double-focusing, hemispherical analyzer with 128-channel detector
X-ray source type
  • Monochromated, micro-focused, low-power Al K-Alpha X-ray source
X-ray spot size
  • 10–400 µm (adjustable in 5 µm steps)
Depth profiling
  • EX06 monatomic ion source or MAGCIS dual-mode ion source
Maximum Sample area
  • 60 x 60 mm
Maximum sample thickness
  • 20 mm 
Vacuum system
  • Two turbo molecular pumps, with automated titanium sublimation pump and backing pump 
Optional accessories
  • UPS, ISS, REELS, iXR Raman spectrometer, MAGCIS, sample tilt module, sample bias module, vacuum transfer module, adaptor for glove box integration 
Style Sheet for Komodo Tabs

Media Gallery

Style Sheet to change H3 to p with em-h3-header class
Style Sheet to change Sample H3 to p with em-h3-header class

Samples


Battery Research

Battery development is enabled by multi-scale analysis with microCT, SEM and TEM, Raman spectroscopy, XPS, and digital 3D visualization and analysis. Learn how this approach provides the structural and chemical information needed to build better batteries.

Learn more ›


Metals Research

Effective production of metals requires precise control of inclusions and precipitates. Our automated tools can perform a variety of tasks critical for metal analysis including; nanoparticle counting, EDS chemical analysis and TEM sample preparation.

Learn more ›


Polymers Research

Polymer microstructure dictates the material’s bulk characteristics and performance. Electron microscopy enables comprehensive microscale analysis of polymer morphology and composition for R&D and quality control applications.

Learn more ›


Geological Research

Geoscience relies on consistent and accurate multi-scale observation of features within rock samples. SEM-EDS, combined with automation software, enables direct, large-scale analysis of texture and mineral composition for petrology and mineralogy research.

Learn more ›


Oil and Gas

As the demand for oil and gas continues, there is an ongoing need for efficient and effective extraction of hydrocarbons. Thermo Fisher Scientific offers a range of microscopy and spectroscopy solutions for a variety of petroleum science applications.

Learn more ›


Nanoparticles

Materials have fundamentally different properties at the nanoscale than at the macroscale. To study them, S/TEM instrumentation can be combined with energy dispersive X-ray spectroscopy to obtain nanometer, or even sub-nanometer, resolution data.

Learn more ›


Forensics

Micro-traces of crime scene evidence can be analyzed and compared using electron microscopy as part of a forensic investigation. Compatible samples include glass and paint fragments, tool marks, drugs, explosives, and GSR (gunshot residue).

Learn more ›


Catalysis Research

Catalysts are critical for a majority of modern industrial processes. Their efficiency depends on the microscopic composition and morphology of the catalytic particles; EM with EDS is ideally suited for studying these properties.

Learn more ›


Fibers and Filters

The diameter, morphology and density of synthetic fibers are key parameters that determine the lifetime and functionality of a filter. Scanning electron microscopy (SEM) is the ideal technique for quickly and easily investigating these features.

Learn more ›


2D Materials

Novel materials research is increasingly interested in the structure of low-dimensional materials. Scanning transmission electron microscopy with probe correction and monochromation allows for high-resolution two-dimensional materials imaging.

Learn more ›


Automotive Materials Testing

Every component in a modern vehicle is designed for safety, efficiency, and performance. Detailed characterization of automotive materials with electron microscopy and spectroscopy informs critical process decisions, product improvements, and new materials.

Learn more ›


Techniques

Multi-technique surface analysis workflow

To meet the need for extensive characterization of surfaces, we have established multi-technique workflows based on using either the Thermo Scientific ESCALAB Xi+ XPS Microprobe or the Thermo Scientific Nexsa Surface Analysis System. These instruments are designed as multi-technique workstations to provide comprehensive analyses in a timely and efficient manner. 

Learn more ›

X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) enables surface analysis, providing elemental composition as well as the chemical and electronic state of the top 10 nm of a material. With depth profiling, XPS analysis extends to compositional insight of layers.

Learn more ›

Multi-technique surface analysis workflow

To meet the need for extensive characterization of surfaces, we have established multi-technique workflows based on using either the Thermo Scientific ESCALAB Xi+ XPS Microprobe or the Thermo Scientific Nexsa Surface Analysis System. These instruments are designed as multi-technique workstations to provide comprehensive analyses in a timely and efficient manner. 

Learn more ›

X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) enables surface analysis, providing elemental composition as well as the chemical and electronic state of the top 10 nm of a material. With depth profiling, XPS analysis extends to compositional insight of layers.

Learn more ›

Style Sheet to change H2 style to p with em-h2-header class
Style Sheet to change H2 style to p with em-h2-header class

Contact us

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards