Assorted Plastic Products

Simplify microplastics testing and accelerate your research.

Our use of plastics in everyday items and manufacturing processes has resulted in a deluge of slowly degradable materials entering our environment and our food chain. As plastics breakdown into tiny particles (<5 mm diameter) the consequences on human, animal and ecosystem health need to be studied.

As the world leader in serving science it’s our mission to enable customers to make the world healthier, cleaner and safer; which means providing education and consultation to customers looking to identify and analyze microplastics. Learn about our FTIR and Raman spectroscopy solutions that can help you identify, characterize, and quantify microplastics from a variety of sample sources (bottled water, ocean water, industry waste streams) without being a spectroscopy expert. 

Contact us

Poster - Analyze Microplastics in the Environment

Infrared spectroscopy can provide valuable information about the origin of plastics particles, adsorbed chemicals and possible toxicity found in our environment.

Download the poster

Microplastics in the environment

Small particles. Big impact.

Beaches, clothing, bottled water, fish, beer, the air and honey all have one thing in common. They each contain microplastics.

Small particle, big impact.

Less than 5 millimeters in size [1], these confounding microparticles are an urgent concern as they invade food chains and slip through purification systems undetected.  Microplastics are small plastic fibers and particles that originate from everyday objects. Sources [2] of these microplastics include:
- Clothes
- Paints
- Tire dust
- Plastic litter ( bags, bottles, straws)
- Personal care products (microbeads)

Of the tested tap water worldwide, 83% is polluted with microplastic fibers as small as 1/10th of a millimeter [3]. These fibers are dispersed into the environment through everyday activities such as doing laundry, swimming, walking in the streets, or cleaning your face. These microparticulates then end up in freshwater lakes, rivers, municipal treatment plants, and ultimately tap water. These sources affect not only our oceans, lakes, and springs, but the life of organisms that inhabit them. Figure 1 shows an analysis of microplastics from a sample of ocean water collected from the Pellestrina beach in the Lagoon of Venice. All three particles identified in box B have a size between 5 to 10 μm. The yellow particulates were identified as polypropylene, and the grey particulate was identified as PV23 Hoechst Laser pigment.

Filter-captured microplastics from ocean water
Figure 1: Filter-captured microplastics from ocean water

Entering your local convenience store, you assume purified bottled water is free from harmful particles. Surprisingly, bottled water is no exception to microplastics contamination and, in fact, has higher contamination than tap water. Research at the State University of New York at Fredonia showed that 93% of tested bottled water had microplastics contamination [4]. This has prompted the World Health Organization (WHO) to evaluate all available research on microplastics to help understand whether a lifetime of eating and drinking microplastics could have an effect on human health. Unfortunately, microplastics are not being detected in water purification systems, so they can come from the tap water sources as well as being created from the machinery during the bottling process. This presents a potential liability risk for beverage companies who are just now exploring how best to measure microplastics in their products.


Uncanny health effects

The impact to human health of microplastics contamination is currently unknown as the discovery is relatively new. This means we must find ways to study the composition and prevalence of microplastics as well as their biological and toxicological effects on humans.

Uncanny health effects

As plastic waste breaks down in our environment, it becomes smaller and smaller and turns into fibers. These fibers can absorb toxic chemicals found in the water, such as plant pesticides or pollution from commercial ships. The microplastics then enter the food chain as organisms consume them, transferring these toxins into their bodies. These toxins translocate up the food chain until they are served on our plates. [5]

Although the impact of this toxin transmission from microplastics to fish to humans has yet to be studied, we do know the health effects toxins have on fish and small organisms. The consequences of toxin-sorbed microplastics ingested by fish can be two fold; exposure can be physical, causing tissue damage, or they can be chemical, resulting in bioaccumulation that causes liver toxicity. [2, 7]


Microplastics analytical problem

To distinguish these microparticles, the current strategy is to use a stereo-microscope and tediously separate microplastics from other materials. [6] Unfortunately this visual method is prone to errors due to the extremely small size (<1 mm) of microplastics and the potential for human error and sample contamination. This near-impossible and time-consuming identification process leaves us with a challenging problem.

Microplastics analytical problem

The United States Environmental Protection Agency (EPA) held a Microplastics Expert Workshop in June 2017 to identify and prioritize the information needed to understand the risks and impact that microplastics pose to human life and our ecosystems.[6]  Of all the needs identified for understanding microplastics risks, the expert group agreed that we need to standardize sample collection, extraction, quantification and characterization of polymers at the micron scale (≥1 µm and ≤1 mm in size). These methods would need to be reproducible, representative, accurate, and precise, while following appropriate quality assurance/quality control (QA/QC) practices. Then the information obtained on microplastic shape, polymer type, size, chemical composition and number of particles in a sample can be used to determine what is truly relevant to human and ecological health. The group supported using complementary analytical methods with visual methods and recommends instruments that can accommodate automation and calibration to assure reproducible results from person to person. [6]


The analytical solution

Raman and infrared microscopy can provide the proper identification of a wide range of microplastic particles (1-5000 µm diameter) collected from environmental, industrial, municipal or consumer-product samples.  These techniques use the ability of light to interact with molecules causing them to vibrate at given frequencies. As a result, a spectrum (or a peak pattern of absorbed or emitted frequencies - Figure 2) can provide a “molecular fingerprint” of a microparticulate, providing the identity of its components.

For particles >1 μm, the Thermo Scientific DXR3xi Raman Imaging Microscope offers the analytical power to discern microplastics from other contaminants with high-spatial resolution down to 0.5 µm. The  multivariate analysis algorithms of the Thermo Scientific OMNIC Software allows for spectral identification across a spectral library of plastics and polymers. The DXR3xi Raman Microscope has autoalignment and calibration capabilities to ensure accurate measurements and consistency between operators, supporting recommendations made by the EPA working group. This microscope quickly images large surface areas across the sample filter, making it a fast, reliable method for comparing multiple particulates and identifying their chemical components. For microplastic particles >10 μm, the Thermo Scientific Nicolet iN10 MX FTIR Imaging Microscope offers similar chemical imaging capabilities with speed and efficiency.

Raman spectra of the microplastic standards: PE - polyethylene; PE-TiO2 polyethylene-titanium dioxide; PS-DVB – polystyrene-divinylbenzene
Figure 2: Raman spectra of the microplastic standards: PE - polyethylene; PE-TiO2 polyethylene-titanium dioxide; PS-DVB – polystyrene-divinylbenzene

The sample workflow diagram in Figure 3 shows a typical process, from sample preparation to microplastics analysis.

Microplastics workflow
Figure 3: Microplastics workflow

Literature


Common Plastics Identifiable by FTIR and Raman Spectroscopy

Name Acronym Typical Density (g/cm3)
Expanded Polystyrene EPS 0.02
Polypropylene PP 0.89
Low-density Polyethylene LDPE 0.96
High-density Polyethylene HDPE 0.96
Acrylonitrile-butadiene-styrene ABS 1.05
Polystyrene PS 1.06
Polyamide (Nylon) PA 1.14
Polymethyl methacrylate PMMA 1.18
Polycarbonate PC 1.2
Cellulose Acetate CA 1.3
Polyvinyl chloride PVC 1.39
Polyethylene terephthalate PET 1.39
Polytetrafluoroethylene PTFE 2.2

Citations

Find peer reviewed publications using FTIR and Raman spectroscopy for microplastics analysis.

Title Year Publication and Link Preview Text
Organic pollutants in microplastics from two beaches of the Portuguese coast 2010 Marine Pollution Bulletin (Volume 60, issue 11, pp 1988-1992) “Identification of polymers was made according to standards in the Nicolet spectrometer database”
Occurrence of microplastics in the coastal marine environment: First observation on sediment of China 2015 Marine Pollution Bulletin (Volume 98, issue 1-2, pp 274-280) “Microplastics were identified by micro-FTIR (Nicolet iN10, USA) that equipped a nitrogen …”
Sampling, Sorting, and Characterizing Microplastics in Aquatic Environments with High Suspended Sediment Loads and Large Floating Debris 2018 JOVE “Used the Nicolet iS10 FTIR Spectrometer to analyze suspect microplastics. Used the Nicolet iN5 FTIR microscope to analyze suspect microplastics.”
Evidence of microplastics pollution in coastal beaches and waters in southern Sri Lanka 2018 Marine Pollution Bulletin (Volume 137, pp 277-284) “Nicolet iS5 FTIR spectrometer collected 16 scans per sample at a resolution of 4.0 cm−1 …”
Microplastics in commercial bivalves from China 2015 Environmental Pollution (Volume 207, pp 190-195) “Verification of microplastics using μ-FT-IR. The identification was conducted out with a μ-FT-IR microscope (Thermo Nicolet iN10 MX)…”
A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples 2015 Marine Pollution Bulletin (Volume 93, pp 202-209) “Microplastic particles on the filter paper from both the SML water and beach sand samples … each square were selected and immediately identified using the FT-IR (Thermo Nicolet FT-IR spectrometer…”
Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea 2018 Environmental Geochemistry and Health (Volume 40, pp1377-1383) “The type of polymer the microplastic particles were made of was identified by the DXR Raman microscope (Thermo Scientific, USA)”
Abundance, size and polymer composition of marine microplastics greater than or equal to 10 μm in the Atlantic Ocean and their modelled vertical distribution 2015 Marine Pollution Bulletin (Volume 100, pp 70-81)

“Raman spectra were obtained via spectral measurements on a DXR Raman microscope (Thermo …)

 

Plastics and microplastics on recreational beaches in Punta del Este (Uruguay): Unseen critical residents? 2016 Environmental Pollution (Volume 218, pp 931-941) “…for polymer identification using a Raman imaging microscope (Thermo Scientific DXRxi Raman Microscope)”

Identification of Microplastics

Webinar length: 20 minutes

This webinar covers why microplastics have become an important research topic for environmental scientists and a concern for food and beverage manufacturers. An explanation of advantages and limitations are for spectroscopy-based analytical methods will be discussed. Specifically microspectroscopy techniques (Raman and FTIR microscopy) as well as attenuated total reflectance (ATR) spectroscopy provide options for identifying unknown particles by characterizing their composition, size, and quantity. Resources are available to help make decisions on which system is best for a given application and budget.

Who should watch

  • Environmental and biological researchers
  • Government agency lab managers
  • Food and beverage QC scientist
  • Personal care QC scientists
  • Analytical testing service providers

Watch now

Webinar presenter:

Webinar Presenter: Dr. Simon Nunn

Simon holds a Ph.D. in Physical Chemistry from the University of Durham, UK. He has over 25 years’ experience in applications, product development and marketing and has a passion for solving analytical problems with spectroscopy.


Webinar preview

Webinar: Microplastics in the environment

Identify and Quantify Microplastics in the Environment

Webinar length: 27 minutes

In this webinar you'll see how environmental researcher, Fabinana Corami, PhD, from the CMR-ISP, Institute of Polar Sciences Venice, Italy, analysis environmental samples like water, sediment and biota for microplastic contamination.

Watch now


Webinar: Microplastics in Limnic Ecosystems

Microplastics in Limnic Ecosystems

Webinar length: 25 minutes

In this webinar, Dr. Elke Fischer will take you through how she and her team analyze and identify microplastics in limnic ecosystems.

Watch now


Webinar: Small Microplastics (<100 μm) in Seawater and Sediments: a new analytical approach using micro-FTIR

Small Microplastics (<100 μm) in Seawater and Sediments

Webinar length: 37 minutes

In this webinar environmental researcher, Fabinana Corami, PhD, from the CMR-ISP, Institute of Polar Sciences Venice, Italy highlights the purification, characterization, and quantitative analysis of microplastic fibers found in sea water.

Watch now

Dr. Yutaka Kameda

Dr. Yutaka Kameda is an Associate Professor at the Chiba Institute of Technology, located in Narashino, Japan. With a masters degree in Water Engineering, and a PhD in Environment and Resources Engineering, he’s been able to work with multiple private and publicly funded organizations all aimed at assessing environmental impact with a focus on water.

In this interview you’ll hear about his environmental research as well as his thoughts on the current and future state of this research area.
See Dr. Kameda's bio


What is your opinion of the current state of microplastics pollution as a problem and how much work is needed to better understand the extent of the problem?

The microplastics issue is at the stage where investigations have been implemented worldwide in earnest this year. Big projects have already launched to standardize measurements/determine finer microplastics for a unified analytical solution. In addition, the research of degradation of conventional plastics or biodegradable plastics in the environment field have also been started. Perhaps, a related report will publish in a couple of years as well, then I expect specific regulations will be launched globally.

What is your research focus?

  • Analytical solution development and monitoring for ultra-fine microplastics (0.1 μm to 20 μm) in the environment
  • Elucidation of sources and movement mechanisms and weathering phenomena of global microplastics in the ocean, including ecological impact assessment

What sinks (lakes/oceans/etc…) are you evaluating?

Target samples are: tap water, seawater, sandy beach, food, biodegradable plastic, and living drainage

What specifically are you trying to understand?

I am interested in the following points
  • Determining the concentration of microplastics in the ocean including very fine particles in 0.1-20 μm size range and the prediction of future concentration as well as particle size distribution.
  • Determination of the degree of weathered microplastics

What does your sampling and analysis workflow look like? What are the key challenges associated with trying to analyze microplastics in environmental samples?

At present, development of a solution for sampling and analyzing >20 μm microplastics has been completed, it is now in the commercialization stage. Detailed methods will be published soon, but a brief explanation is as follows,
  • Collect samples using plastic-free equipment
  • Pretreatment using hydrogen peroxide, sodium iodide and enzyme
  • Automatic analysis by Thermo Scientific Nicolet iN10 MX Infrared Imaging Microscope with automatic particle analysis software. For particles <20 μm, this is currently my key research. My problems in method development are likely to be resolved. I am currently searching for a Raman supplier as a partner for the development. I am planning to develop the analysis method with Raman into 2021.

What kind of instrumentation do you use? How useful is it to have more automated solutions for microplastics location and identification?

I am using a Nicolet iN10MX Microscope to define particle size, identification and quantification with OMNIC Picta software.

What is your opinion on the current state of regulations? Are you engaged with regulatory leaders? What are your expectations of national and international regulations on microplastics pollution and monitoring?

  • Microplastic contamination and pollution characteristics are still not known. Sometimes I work with key regulators.  In the future, I expect the investigation of microplastics, as well as policies to control microplastic pollution, will be implemented as follows:
  • The environmental surveys will be conducted for microplastics down to a limit of 20 or 0.2 μm particles (currently the limit can be >300 μm).
  • Polymers that are highly toxic in the environment and that are likely to exist as microparticles in the environment may be banned.
  • It will be recommended to use and adopt biodegradable plastics. At that time, the environmental degradation test would be revised to measure the particle size distribution. As a result, with these new definitions, conventional biodegradable plastics may not meet the requirements.
  • The polymers of microcapsules used in daily necessities are also likely to be replaced with new materials.

Contact us


Bio: Dr. Yutaka Kameda | Chiba Institute of Technology | Associate Professor

Education
1998 – 2000: Hokkaido University, PhD in Environment and Resources Engineering
1995 – 1997: Tohoku University, MSc in Water Engineering
1991– 1994: Tohoku University, BSc in Civil Engineering

Work Experience
2012 – Present: Associate professor of creative engineering, Chiba Institute of Technology
2007 – 2012: Researcher in Water Environment, Center for Environment Science in Saitama
2006 – 2007: Researcher, Public Works Research Institute, Japanese government
1992 – 2005: COE fellow, Environmental Risk lab, Yokohama National University

Research Projects

  • Microplastics monitoring and their environmental behavior analysis in western Pacific Ocean. (Grants‐in‐aid for Scientific Research, Japanese government)
  • Establishment of novel analysis methods to measure microplastics by micro-FTIR spectroscopy (Thermo Fisher Scientific)
  • Microplastics monitoring, their environmental behavior analysis and establishment of their simulation models in Japanese rivers. (Japanese River Fund)
  • Developing new tools for evaluating the environmental impact of emerging organic chemicals on coastal environments and organisms. (The Foundation for Australia-Japan Studies)
  • Neonicotinods exposure pathway analysis to bee colonies and honey in Japan (Actbeyond Foundation)

Recent Papers

  1. D. Ueno, H. Mizukawa, O. Inanami, H. Nagasaka, N. Tatsuta, Y. Narazaki, T. Fujino, I. Watanabe, Y. Kameda, K. Nakai:“Caddisfly watch”, a biomonitoring program using Stenopsyche larvae to determine radioactive cesium contamination in rivers following the Fukushima nuclear disaster, Landscape and Ecological Engineering, January 2018, Volume 14, Issue 1, pp29-35
  2. M. Allinson, Y. Kameda, K. Kimura and G. Allinson: Occurrence and assessment of the risk of ultraviolet filters and light stabilizers in Victorian estuaries, Environmental Science and Pollution Research, April 2018, Volume 25, Issue 12, pp12022-12033
  3. Y. Tashiro, Y. Kameda: Pesticide Contamination Monitored by Passive Sampling in Environmental Water of Japanese Coral Island, Journal of Water Resources and Ocean Science; 2015;4(2):39-43 (Mar, 2015)

Sample preparation kit/consumables

Getting supplies and samples ready for microparticle analysis can be cumbersome. These microparticle analysis sample preparation kits are here to help streamline the process, no matter your sample type.

Learn more



Instrumentation

  FTIR + ATR FTIR + Small Spot ATR Point-and-Shoot FTIR Microscope FTIR Imaging Microscope Raman Microscope Raman Imaging Microscope
Configuration Nicolet Summit FTIR Spectrometer and Everest ATR Accessory SurveyIR Microspectroscopy Accessory + Nicolet Summit FTIR Spectrometer Nicolet iN5 IR Microscope + Nicolet iS20 FTIR Spectrometer Nicolet iN10 MX IR Imaging Microscope DXR3 Raman Microscope DXR3xi Raman Imaging Microscope
  Nicolet Summit FTIR Spectrometer and Everest ATR Accessory SurveyIR Microspectroscopy Accessory + Nicolet Summit FTIR Spectrometer Nicolet iN5 IR Microscope + Nicolet iS20 FTIR Spectrometer
Nicolet iN10 MX IR Imaging Microscope DXR3 Raman Microscope DXR3xi Raman Imaging Microscope
Measurable Particle Size
5 mm          
1 mm        
500 μm        
100 μm      
10 μm    
1 μm        
Manual Sample Placement Only Yes Yes Yes No No No
Automated Analysis of Filters No No No Yes Yes Yes
Immunity to Sample Fluorescence Yes Yes Yes Yes No No


HDI-analytical-instruments-microplastics-270x195