Enhance product safety, cycle life,
and power output
Identify breakdown products, understand degradation processes, and gain insight into failure mechanisms.
Analyze Your Way to a Better Battery
Explore new poster notes to help determine if there is a correlation between capacity loss and specific compounds or class of compounds by identifying aged electrolyte degradation products using IC and IC-HRAM MS/MS.
Download the poster notes for more information:
American Laboratory featured article: Ion-Exchange Selectivity and HRAMS Elucidate Lithium-Ion Battery Degradation Pathways
Review the details of a study that identifies various classes of non-targeted and unknown anionic degradation products obtained from surface deposits of lithium ion batteries using ion chromatography (IC) and IC coupled with high resolution accurate mass spectrometry (HRAMS).
Lithium-Ion Battery Failure Analysis
Understanding battery failures requires analysis of the three main battery components (cathode, anode and electrolyte), individually and how they interact together as a system.
Download the case study for more information:
Trace Degradation Analysis of Lithium-Ion Battery Components
Rechargeable lithium-ion batteries (LIBs) are key components for portable electronics, medical devices, industrial equipment and automobiles. They are light weight, provide high energy density and recharge without memory effects. The first step in understanding fundamental processes and degradation mechanism in LIBs is understanding how they operate.
Webinars
Learn about the analysis of cycled anode material and the separation of different degradation products, including the identification of manganese dissolution products deposited on the anode surface of an aged manganese-based lithium-ion battery.
Learn how the identification of non-targeted and unknown anionic electrolyte degradation products by IC and IC-HRAM MS can provide insight into mechanistic pathways that can lead to improved battery safety and performance.
Develop Higher Density Materials for Li-ion Batteries
Learn which analytical tools are useful for characterizing battery cell materials and what are their benefits. Learn why is a glovebox necessary in the R&D and production of LIB and how it works.
Characterization of Battery Materials: Test Cases for the Energy Storage of Tomorrow
Learn about the basics of characterizing battery materials and the special equipment required to run these tests, including the basics of testing battery materials and exemplary case studies.
Manufacturing and Processing Resource Library
Access a targeted collection of scientific application notes, case studies, videos, webinars and white papers for chemical, electronic, power and energy, plastics and polymers, and paints and pigments analysis.