Search Thermo Fisher Scientific
Search Thermo Fisher Scientific
As pioneers and innovators in proteomics research, Orbitrap mass spectrometry has led the way to defining the modern era of unbiased single-cell proteomics. See the evolution of modern single-cell proteomics in a brief chronology.
Proteomics has seen many advances over the last decade from improvements in mass spectrometry instrumentation to an expansion of new workflows and applications. The promise of single-cell proteomics has been a topic frequently discussed over the last 10 years, with the hope it becomes a reality.
Download the white paper to learn about the challenges of single-cell proteomics, new technologies that address these challenges, improvements and the outlook for single-cell proteomics.
Download Look inside:
Learn how to conduct mass spectrometry based single-cell proteomics study using TMT multiplexing to maximize throughput with high resolution accurate mass (HRAM) Orbitrap mass spectrometry. Dr. Benedikt Kessler, Professor of Biochemistry and Life Science Mass Spectrometry, University of Oxford will present work looking responses employing both proteomics and transcriptomics to analyze NP-specific T-cells from acute SARS-CoV-2 patients.
Dr. Ryan Kelly, Associate professor, Chemistry and Biochemistry of Brigham Young University discusses how to optimize and minimize sample loss in single cell sample preparation for MS analysis and best practices for single cell analysis with LC-MS.
In this webinar, Dr. Erwin Schoof, Head of Proteomics Facility, Copenhagen University, describes how a 384-well workflow, using standard off-the-shelf components, allows characterization of single cells to a protein depth of well over 1,000 proteins per cell.
Dr. Nikolai Slavov, Bioengineering Department and Barnett Institute, Northeastern University presents on how to quantitatively analyze proteins in single cells, set up automation and miniaturize sample preparation, and how to jointly analyze transcriptomics and proteomics data from single cells.
In this webcast watch Dr. Kristin Burnum-Johnson, Senior Scientist and Team Lead, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory demonstrates high-resolution and in-depth proteome imaging using an automated workflow.
Learn how to conduct mass spectrometry based single-cell proteomics study using TMT multiplexing to maximize throughput with high resolution accurate mass (HRAM) Orbitrap mass spectrometry. Dr. Benedikt Kessler, Professor of Biochemistry and Life Science Mass Spectrometry, University of Oxford will present work looking responses employing both proteomics and transcriptomics to analyze NP-specific T-cells from acute SARS-CoV-2 patients.
Dr. Ryan Kelly, Associate professor, Chemistry and Biochemistry of Brigham Young University discusses how to optimize and minimize sample loss in single cell sample preparation for MS analysis and best practices for single cell analysis with LC-MS.
In this webinar, Dr. Erwin Schoof, Head of Proteomics Facility, Copenhagen University, describes how a 384-well workflow, using standard off-the-shelf components, allows characterization of single cells to a protein depth of well over 1,000 proteins per cell.
Dr. Nikolai Slavov, Bioengineering Department and Barnett Institute, Northeastern University presents on how to quantitatively analyze proteins in single cells, set up automation and miniaturize sample preparation, and how to jointly analyze transcriptomics and proteomics data from single cells.
In this webcast watch Dr. Kristin Burnum-Johnson, Senior Scientist and Team Lead, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory demonstrates high-resolution and in-depth proteome imaging using an automated workflow.
At Thermo Fisher Scientific, we’re proud to partner with life science innovators who are transforming the future of human health. Every single day.
Presented at ASMS 2020
Obtain maximum quantitative insights with industry-leading single-cell sensitivity and precision. Thermo Scientific Orbitrap Exploris 480 mass spectrometer accelerates your path to large scale studies to actionable outcomes.
Obtain maximum insights on your most complex molecules and biological systems, from whole proteome profiling and quantitation, structural characterization to multiplexed single-cell proteomics.
The Thermo Scientific Vanquish Neo UHPLC system delivers maximum performance for nano-, capillary-, and micro-flow LC-MS. From omics and biopharma to translational research, it’s the new standard in low-flow LC.
Achieve superior selectivity and enable more proteins to be identified while reducing time-consuming sample preparation steps with the next generation differential ion mobility Thermo Scientific FAIMS Pro Duo interface.
Designed for the next level of sample multiplexing, without compromising on protein identification and quantitation, Thermo Scientific TMTpro 18-plex label reagents are the next generation of Tandem Mass Tag (TMT) reagents.
The Thermo Scientific µPAC HPLC columns are specialized columns that provide ultra-high resolution needed to extract the maximum of information from highly complex samples with low-flow chromatography.
Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells (Orbitrap Fusion Lumos)
Ying Zhu, Paul D. Piehowski, Rui Zhao, Jing Chen, Yufeng Shen, Ronald J. Moore, Anil K. Shukla, Vladislav A. Petyuk, Martha Campbell-Thompson, Clayton E. Mathews, Richard D. Smith, Wei-Jun Qian & Ryan T. Kelly
Nature Communications volume 9, Article number: 882 (2018)
https://www.nature.com/articles/s41467-018-03367-w
High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform (Orbitrap Fusion Lumos)
Maowei Dou, Geremy Clair, Chia-Feng Tsai, Kerui Xu, William B. Chrisler, Ryan L. Sontag, Rui Zhao, Ronald J. Moore, Tao Liu, Ljiljana Pasa-Tolic, Richard D. Smith, Tujin Shi, Joshua N. Adkins, Wei-Jun Qian, Ryan T. Kelly, Charles Ansong*, and Ying Zhu
Anal. Chem. 2019, 91, 20, 13119–13127
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b03349
Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis (Orbitrap Elite)
Zi-Yi Li, Min Huang, Xiu-Kun Wang, Ying Zhu, Jin-Song Li, Catherine C. L. Wong, and Qun Fang
Anal. Chem. 2018, 90, 8, 5430–5438
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.8b00661
Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography–Mass Spectrometry for High-Throughput Single-Cell Proteomics (Orbitrap Fusion Lumos)
Sarah M. Williams, Andrey V. Liyu, Chia-Feng Tsai, Ronald J. Moore, Daniel J. Orton, William B. Chrisler, Matthew J. Gaffrey, Tao Liu, Richard D. Smith, Ryan T. Kelly, Ljiljana Pasa-Tolic, and Ying Zhu
Anal. Chem. 2020, 92, 15, 10588–10596
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01551
Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLC-MS (Orbitrap Fusion Lumos)
Dr. Ying Zhu, Dr. Geremy Clair, Dr. William B. Chrisler, Dr. Yufeng Shen, Rui Zhao, Dr. Anil K. Shukla, Ronald J. Moore, Dr. Ravi S. Misra, Dr. Gloria S. Pryhuber, Dr. Richard D. Smith, Dr. Charles Ansong, Dr. Ryan T. Kelly
Angew Chem Int Ed Engl . 2018 Sep 17;57(38):12370-12374
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201802843
Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics (Q Exactive Plus)
Chia-Feng Tsai, Pengfei Zhang, David Scholten, Kendall Martin, Yi-Ting Wang, Rui Zhao, William B. Chrisler, Dhwani B. Patel, Maowei Dou, Yuzhi Jia, Carolina Reduzzi, Xia Liu, Ronald J. Moore, Kristin E. Burnum-Johnson, Miao-Hsia Lin, Chuan-Chih Hsu, Jon M. Jacobs, Jacob Kagan, Sudhir Srivastava, Karin D. Rodland, H. Steven Wiley, Wei-Jun Qian, Richard D. Smith, Ying Zhu, Massimo Cristofanilli, Tao Liu, Huiping Liu & Tujin Shi
Communications Biology volume 4, Article number: 265 (2021)
https://www.nature.com/articles/s42003-021-01797-9
Digital microfluidic isolation of single cells for -Omics (Q Exactive HF-X)
Julian Lamanna, Erica Y. Scott, Harrison S. Edwards, M. Dean Chamberlain, Michael D. M. Dryden, Jiaxi Peng, Barbara Mair, Adam Lee, Calvin Chan, Alexandros A. Sklavounos, Austin Heffernan, Farhana Abbas, Charis Lam, Maxwell E. Olson, Jason Moffat & Aaron R. Wheeler Nature Communications volume 11, Article number: 5632 (2020)
https://www.nature.com/articles/s41467-020-19394-5
Fully Automated Sample Processing and Analysis Workflow for Low-Input Proteome Profiling (Orbitrap Exploris 480)
Yiran Liang, Hayden Acor, Michaela A. McCown, Andikan J. Nwosu, Hannah Boekweg, Nathaniel B. Axtell, Thy Truong, Yongzheng Cong, Samuel H. Payne, and Ryan T. Kelly
Anal. Chem. 2020, XXXX, XXX, XXX-XXX
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04240
High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip (Orbitrap Eclipse, Q Exactive Plus)
Jongmin Woo, Sarah M. Williams, Lye Meng Markillie, Song Feng, Chia-Feng Tsai, Victor Aguilera-Vazquez, Ryan L. Sontag, Ronald J. Moore, Dehong Hu, Hardeep S. Mehta, Joshua Cantlon-Bruce, Tao Liu, Joshua N. Adkins, Richard D. Smith, Geremy C. Clair, Ljiljana Pasa-Tolic & Ying Zhu
Nature Communications volume 12, Article number: 6246 (2021)
https://www.nature.com/articles/s41467-021-26514-2
Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry (DIA, Single-Cell Proteomics, Orbitrap Eclipse)
Sofani Tafesse Gebreyesus, Asad Ali Siyal, Reta Birhanu Kitata, Eric Sheng-Wen Chen, Bayarmaa Enkhbayar, Takashi Angata, Kuo-I Lin, Yu-Ju Chen & Hsiung-Lin Tu
Nature Communications volume 13, Article number: 37 (2022)
https://www.nature.com/articles/s41467-021-27778-4
Integrated Proteome Analysis Device for Fast Single-Cell Protein Profiling (Orbitrap Fusion)
Xi Shao, Xuantang Wang, Sheng Guan, Haizhu Lin, Guoquan Yan, Mingxia Gao, Chunhui Deng, and Xiangmin Zhang
Anal. Chem. 2018, 90, 23, 14003–14010
https://pubs.acs.org/doi/10.1021/acs.analchem.8b03692
Redesigning the T-probe for mass spectrometry analysis of online lysis of non-adherent single cells (LTQ Orbitrap XL)
Yanlin Zhu, Renmeng Liu, ZhiboYang
Analytica Chimica Acta Volume 1084, 25 November 2019, Pages 53-59
https://www.sciencedirect.com/science/article/abs/pii/S0003267019308839
Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots (Orbitrap Elite, Orbitrap Fusion)
Yingde Zhu, Hui Li, Sarabjit Bhatti, Suping Zhou, Yong Yang, Tara Fish & Theodore W Thannhauser
Horticulture Research volume 3, Article number: 16026 (2016)
https://www.nature.com/articles/hortres201626
Water Droplet-in-Oil Digestion Method for Single-Cell Proteomics (Orbitrap Eclipse)
Takeshi Masuda, Yuma Inamori, Arisu Furukawa, Maki Yamahiro, Kazuki Momosaki, Chih-Hsiang Chang, Daiki Kobayashi, Hiroto Ohguchi, Yawara Kawano, Shingo Ito, Norie Araki, Shao-En Ong, and Sumio Ohtsuki
Anal. Chem. 2022, 94, 29, 10329–10336
https://pubs.acs.org/doi/10.1021/acs.analchem.1c05487
Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content (Q Exactive HF)
Liangliang Sun, Kyle M. Dubiak, Elizabeth H. Peuchen, Zhenbin Zhang, Guijie Zhu, Paul W. Huber, and Norman J. Dovichi
Anal. Chem. 2016, 88, 13, 6653–6657
https://pubs.acs.org/doi/10.1021/acs.analchem.6b01921
Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo (Orbitrap Fusion)
Camille Lombard-Banek, Prof. Sally A. Moody, Prof. Peter Nemes
Angew. Chem. Int. Ed, 55 (2016), pp. 2454-2458
https://onlinelibrary.wiley.com/doi/10.1002/anie.201510411
Single Cell Proteomics by Data-Independent Acquisition To Study Embryonic Asymmetry in Xenopus laevis (Q Exactive HF-X)
Anumita Saha-Shah, Melody Esmaeili, Simone Sidoli, Hyojeong Hwang, Jing Yang, Peter S. Klein, and Benjamin A. Garcia
Anal. Chem. 2019, 91, 14, 8891–8899
https://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b00327
Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos (Q Exactive Plus)
Camille Lombard-Banek, Sally A. Moody, M. Chiara Manzini, and Peter Nemes
Anal. Chem. 2019, 91, 7, 4797–4805
https://pubs.acs.org/doi/10.1021/acs.analchem.9b00345
Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs (Orbitrap Velos)
Arne H. Smits, Rik G.H. Lindeboom, Matteo Perino, Simon J. van Heeringen, Gert Jan C. Veenstra, Michiel Vermeulen
Nucleic Acids Research, Volume 42, Issue 15, 2 September 2014, Pages 9880–9891
https://academic.oup.com/nar/article/42/15/9880/2435191?login=true
Expression variation and covariation impair analog and enable binary signaling control (TSQ Vantage)
Kyle M Kovary Brooks Taylor Michael L Zhao Mary N Teruel
Molecular Systems Biology (2018)14:e7997
https://www.embopress.org/doi/full/10.15252/msb.20177997
Capillary Electrophoresis Mass Spectrometry for Scalable Single-Cell Proteomics (Orbitrap Fusion Lumos)
Leena R. Pade, Sam B. Choi, Pablo Muñoz-LLancao, M. Chiara Manzini and Peter Nemes
Front Chem . 2022 Apr 8;10:863979
https://www.frontiersin.org/articles/10.3389/fchem.2022.863979/full
High-Throughput, Comprehensive Single-Cell Proteomic Analysis of Xenopus laevis Embryos at the 50-Cell Stage Using a Microplate-Based MICROFASP System (Orbitrap Fusion Lumos)
Zhenbin Zhang, Kyle M. Dubiak, Evgenia Shishkova, Paul W. Huber, Joshua J. Coon, and Norman J. Dovichi
Anal. Chem. 2022, 94, 7, 3254–3259
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.1c04987
Three-dimensional feature matching improves coverage for single-cell proteomics based on ion mobility filtering (Single-Cell, Orbitrap Fusion Lumos, FAIMS Pro, LFQ)
Jongmin Woo, Geremy C. Clair, Sarah M. Williams, Song Feng, Chia-Feng Tsai, Ronald J. Moore, William B. Chrisler, Richard D. Smith, Ryan T. Kelly, Ljiljana Pasa-Tolic, Charles Ansong and Ying Zhu
Cell Systems 13, 1–9, May 18, 2022
https://www.sciencedirect.com/science/article/pii/S2405471222000813
Real-Time Search-Assisted Acquisition on a Tribrid Mass Spectrometer Improves Coverage in Multiplexed Single-Cell Proteomics (Orbitrap Eclipse, FAIMS Pro, Real-Time Search, TMTpro)
Benjamin Furtwängler, Nil Üresin, Khatereh Motamedchaboki, Romain Huguet, Daniel Lopez-Ferrer, Vlad Zabrouskov, Bo T. Porse, and Erwin M. Schoof
Mol Cell Proteomics (2022) 21(4) 100219
https://www.mcponline.org/article/S1535-9476(22)00027-5/fulltext
A simple, rapid, and practical method for single-cell proteomics based on mass-adaptive coating of synthetic peptides (Orbitrap Fusion Lumos)
Siqi Li, Kaichan Su, Zhenkun Zhuang, Qing Qin, Lei Gao, Yamei Deng, Xuyang Liu, Guixue Hou, Longtao Wang, Piliang Hao, Huanming Yang, Siqi Liu, Hongming Zhu, Yan Ren
Science Bulletin
https://www.sciencedirect.com/science/article/abs/pii/S209592732100788X?via=ihub
Label-Free Profiling of up to 200 Single-Cell Proteomes per Day Using a Dual-Column Nanoflow Liquid Chromatography Platform (Single-cell proteomics, Orbitrap Exploris 480)
Kei G. I. Webber, Thy Truong, S. Madisyn Johnston, Sebastian E. Zapata, Yiran Liang, Jacob M. Davis, Alexander D. Buttars, Fletcher B. Smith, Hailey E. Jones, Arianna C. Mahoney, Richard H. Carson, Andikan J. Nwosu, Jacob L. Heninger, Andrey V. Liyu, Gregory P. Nordin, Ying Zhu, and Ryan T. Kelly
Anal. Chem
https://pubs.acs.org/doi/10.1021/acs.analchem.2c00646
DART-ID increases single-cell proteome coverage (Q Exactive)
Albert Tian Chen, Alexander Franks, Nikolai Slavov
PLoS Comput Biol . 2019 Jul 1;15(7):e1007082
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007082#sec012
An Improved Boosting to Amplify Signal withIsobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics (Orbitrap Fusion Lumos, Q Exactive Plus)
C.-F. Tsai, R. Zhao, S.M. Williams, R.J. Moore, K. Schultz, W. Chrisler, L. Pasa-Tolic, K. Rodland, R.D. Smith, T. Shi, Y. Zhu, T. Liu
Mol. Cell. Proteomics, 19 (2020), pp. 828-838
https://www.sciencedirect.com/science/article/pii/S1535947620350064
Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2 (Q Exactive)
Harrison Specht, Edward Emmott, Aleksandra A. Petelski, R. Gray Huffman, David H. Perlman, Marco Serra, Peter Kharchenko, Antonius Koller & Nikolai Slavov
Genome Biology volume 22, Article number: 50 (2021)
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02267-5
Multiplexed single-cell proteomics using SCoPE2 (Q Exactive)
Aleksandra A. Petelski, Edward Emmott, Andrew Leduc, R. Gray Huffman, Harrison Specht, David H. Perlman & Nikolai Slavov
Nature Protocols volume 16, pages 5398–5425 (2021)
https://www.nature.com/articles/s41596-021-00616-z
Single Cell Proteomics Using Multiplexed Isobaric Labeling for Mass Spectrometric Analysis (TMTpro, Single-cell proteomics, Q Exactive HF-X, Orbitrap Fusion)
Akos Vegvari, Jimmy E. Rodriguez, and Roman A. Zubarev
Single-Cell Protein Analysis pp 113-127
https://link.springer.com/protocol/10.1007/978-1-0716-1771-7_8
Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell (Orbitrap Eclipse)
Yongzheng Cong, Khatereh Motamedchaboki, Santosh A. Misal, Yiran Liang, Amanda J. Guise, Thy Truong, Romain Huguet, Edward D. Plowey, Ying Zhu, Daniel Lopez-Ferrer and Ryan T. Kelly
Chem. Sci., 2021, 12, 1001–1006
https://pubs.rsc.org/en/content/articlelanding/2021/sc/d0sc03636f#!divAbstract
Ultrasensitive NanoLC-MS of Subnanogram Protein Samples Using Second Generation Micropillar Array LC Technology with Orbitrap Exploris 480 and FAIMS PRO (Orbitrap Exploris 480, FAIMS Pro)
Karel Stejskal, Jeff Op de Beeck, Gerhard Dürnberger, Paul Jacobs, and Karl Mechtler
Anal. Chem. 2021, 93, 25, 8704–8710
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00990
Improved Single-Cell Proteome Coverage Using Narrow-Bore Packed NanoLC Columns and Ultrasensitive Mass Spectrometry (Orbitrap Eclipse)
Yongzheng Cong, Yiran Liang, Khatereh Motamedchaboki, Romain Huguet, Thy Truong, Rui Zhao, Yufeng Shen, Daniel Lopez-Ferrer, Ying Zhu, and Ryan T. Kelly
Anal. Chem. 2020, 92, 3, 2665–2671
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b04631
Quantitative Accuracy and Precision in Multiplexed Single-Cell Proteomics (DIA, TMT, Single-cell, TMT10ple, TMTpro, FAIMS, Orbitrap Exploris 480)
Claudia Ctortecka*, Karel Stejskal, Gabriela Krššáková, Sasha Mendjan, and Karl Mechtler* Analytical Chemistry 2022, 94, 5, 2434-2443
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04174
Single-Cell Chemical Proteomics (SCCP) Interrogates the Timing and Heterogeneity of Cancer Cell Commitment to Death (Single-cell proteomics, Orbitrap Fusion Lumos, SCOPE-MS)
Ákos Végvári*, Jimmy E. Rodriguez, and Roman A. Zubarev
Anal. Chem. 2022
https://pubs.acs.org/doi/full/10.1021/acs.analchem.2c00413
Quantitative single-cell proteomics as a tool to characterize cellular hierarchies (Single-cell, FAIMS Pro, TMTpro, TMT MS2, Orbitrap Exploris 480)
Erwin M. Schoof, Benjamin Furtwängler, Nil Üresin, Nicolas Rapin, Simonas Savickas, Coline Gentil, Eric Lechman, Ulrich auf dem Keller, John E. Dick & Bo T. Porse
Nature Communications volume 12, Article number: 3341 (2021)
https://www.nature.com/articles/s41467-021-23667-y
SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation (Orbitrap Elite)
Bogdan Budnik, Ezra Levy, Guillaume Harmange & Nikolai Slavov
Genome Biology volume 19, Article number: 161 (2018)
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1547-5?optIn=false
Proteome Profiling of 1 to 5 Spiked Circulating Tumor Cells Isolated from Whole Blood Using Immunodensity Enrichment, Laser Capture Microdissection, Nanodroplet Sample Processing, and Ultrasensitive nanoLC–MS (Orbitrap Fusion Lumos)
Ying Zhu, Jennifer Podolak, Rui Zhao, Anil K. Shukla, Ronald J. Moore, George V. Thomas*, and Ryan T. Kelly
Anal. Chem. 2018, 90, 20, 11756–11759
https://pubs.acs.org/doi/10.1021/acs.analchem.8b03268
Optimized data-independent acquisition approach for proteomic analysis at single-cell level (Orbitrap Fusion Lumos)
Yuefan Wang, Tung-Shing Mamie Lih, Lijun Chen, Yuanwei Xu, Morgan D. Kuczler, Liwei Cao, Kenneth J. Pienta, Sarah R. Amend & Hui Zhang
Clinical Proteomics volume 19, Article number: 24 (2022)
https://link.springer.com/article/10.1186/s12014-022-09359-9
Microscopy-based single-cell proteomic profiling reveals heterogeneity in DNA damage response dynamics (Single-cell proteomics, Orbitrap Eclipse, SCOPE-MS)
Pin-Rui Su, Li You, Cecile Beerens, Karel Bezstarosti, Jeroen Demmers, Martin Pabst, Roland Kanaar, Cheng-Chih Hsu, Miao-Ping Chien
Cell Reports Methods, Volume 2, Issue 6, 2022, 100237
https://www.sciencedirect.com/science/article/pii/S2667237522001060
Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes (Orbitrap Velos)
IrmaVirant-Klun, Stefan Leicht, Christopher Hughes, Jeroen Krijgsveld
MCP Volume 15, Issue 8, August 2016, Pages 2616-2627
https://www.mcponline.org/article/S1535-9476(20)33492-7/fulltext
Single-cell quantitative proteomic analysis of human oocyte maturation revealed high heterogeneity in in vitro matured oocytes (Q Exactive HF-X)
Yueshuai Guo, Lingbo Cai, Xiaofei Liu, Long Ma, Hao Zhang, Bing Wang, Yaling Qi, Jiayin Liu, Feiyang Diao, Jiahao Sha, Xuejiang Guo
Molecular & Cellular Proteomics 2022, 100267 ISSN 1535-9476
https://www.sciencedirect.com/science/article/pii/S1535947622000755
Single-cell proteomics reveals changes in expression during hair-cell development (Orbitrap Fusion Lumos)
Ying Zhu, Mirko Scheibinger, Daniel Christian Ellwanger, Jocelyn F Krey, Dongseok Choi, Ryan T Kelly, Stefan Heller, Peter G Barr-Gillespie
eLife 2019;8:e50777
https://elifesciences.org/articles/50777
Defining the carrier proteome limit for single-cell proteomics (Orbitrap Fusion Lumos)
Tommy K. Cheung, Chien-Yun Lee, Florian P. Bayer, Atticus McCoy, Bernhard Kuster & Christopher M. Rose
Nature Methods volume 18, pages76–83 (2021)
https://www.nature.com/articles/s41592-020-01002-5
Features of Peptide Fragmentation Spectra in Single-Cell Proteomics (Orbitrap Exploris 480)
Hannah Boekweg, Daisha Van Der Watt, Thy Truong, S. Madisyn Johnston, Amanda J. Guise, Edward D. Plowey, Ryan T. Kelly, and Samuel H. Payne
J. Proteome Res. 2021
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00670
A deeper look at carrier proteome effects for single-cell proteomics (Single-cell, TMTpro, TMT MS2, Orbitrap Exploris 480)
Zilu Ye, Tanveer S. Batth, Patrick Rüther & Jesper V. Olsen
Communications Biology volume 5, Article number: 150 (2022)
https://www.nature.com/articles/s42003-022-03095-4