Cell culture heroes banner

Carlemi Calitz, PhD

Post-doctoral research fellow at Phamacen North-West University (NWU)


Carlemi completed her BSc in Biological Sciences at the North-West University (NWU) in 2010, followed by a Hons. BSc in Biochemistry (NWU) in 2011. In 2012, she accepted a position as senior laboratory technician in the department Pharmaceutics at NWU, which enabled her to pursue a MSc in Pharmaceutics (2013-2014). In 2014 Carlemi was invited to join the international Golden Key honour society for academic achievements as part of the top 15% of students in her field at NWU. 

Carlemi completed her PhD in Pharmaceutics in 2017 under the guidance of Dr C. Gouws, Dr K. Wrzesinksi and Prof S. Hamman. Her thesis focused on the establishment of three-dimensional cell culture models for drug  bio-transformation and toxicity studies. She was awarded the South African National Research Foundation (NRF) Innovation doctoral scholarship and travel award in 2016 and 2017. With this award, she was able to spend six months at the University of Southern Denmark (SDU) in Odense, Denmark, learning the art of three-dimensional spheroid culturing.

Since 2014 Carlemi has published five first-author publications in international peer-reviewed journals. In 2014 she presented at the Young Scientist award of the 35th conference of the Academy of Pharmaceutical Sciences of South Africa. She has also acted as reviewer for the journal Current Pharmacology Reports, and holds membership to the South African Academy of Pharmaceutical Sciences.

Currently Carlemi is employed in the faculty of Health Sciences at the NWU as a post-doctoral research fellow, focusing on the development of three-dimensional cell culture models and platforms for cancer research, bio-transformation and toxicity screening of  pre-clinical lead compounds or traditional herbal medicine.

Learn about Carlemi’s research

Title: Establishing a dynamic micro-gravity spheroid 3D culture system

Learning objectives

  • Discerning the advantages and disadvantages of 2D versus 3D cell culturing approaches
  • Understanding the method of rotating micro-gravity bioreactors as a means to produce long-term spheroid cultures
  • Implementing spheroid cultures in cancer research

The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines, grown on static flat surfaces—generally referred to known as traditional two-dimensional cultures (2D). When considering drug discovery and development to discern possible treatment options, ideally one should to implement an experimental model that best mimics the in vivo environment of man.Organs boast a unique three-dimensional cellular architecture, with cell-cell and cell-matrix interactions, creating a complex communication network through biochemical and mechanical signals. More recently, proof of concept that three-dimensional cell culturing (3D) is revolutionizing the evaluation of lead compounds has been shown. However, important and distinct differences exist between 2D and 3D cell culturing, as well as the in vivo situation. These critical differences culminate in discrepancies in treatment responses between these systems, suggesting that 3D models may be able to provide a more accurate representation of how a specific organ or cancer would react, compared to 2D. Various types of 3D cell culture model systems are currently available and being explored. It is important to note that the choice of system depends on the hypothesis, study design or target organ, and not one system is superior to the other and each offers various advantages and disadvantages. The dynamic micro-gravity spheroid 3D system, exhibits the ability to overcome many of the shortcomings of traditional 2D cell cultures. In implementing this system in our laboratories, we aim to establish specific spheroid models and platforms to answer the pressing and relevant questions currently in cancer research.

Watch the webinar

I want to be the next Gibco Cell Culture Hero

As a Gibco Cell Culture Hero you will be a part of a growing community of global PhD and postdoc researchers who promote education and drive tomorrow's breakthroughs.

Complete the form below for a chance to present your research to a global audience via webinar, share your story of success and perseverance to the world on thermofisher.com.

Must be a PhD or postdoc using cell culture to apply. Must be passionate about communicating science within your social media networks.

Submit application

Links to content or other Internet sites should not be construed as an endorsement of the organizations, entities, views or content contained therein. The opinions and/or views expressed on social media platforms represent the thoughts of the individual and online communities, and not those necessarily of Thermo Fisher Scientific.