In This Issue


  New T Cell Receptor Pathway Antibodies — ABfinity™ Recombinant Rabbit Monoclonal Antibodies

  Sensitive and Specific Detection of RFP — New RFP Polyclonal Antibody for Western Blots and Immunocytochemistry

Pamper and Personalize Your Countess® Automated Cell Counter — New Countess® Care Kit

New Products for Cell &Tissue Analysis
Find Antibodies From Invitrogen with our new selection tools


More Information

What's New?
  Now available! The all-new RNAi and Epigenetics Sourcebook—your resource for the latest approaches to knockdown, DNA methylation, chromatin biology, and noncoding RNAs.


what they are
ABfinity™ recombinant rabbit monoclonal antibodies are now available for various members of the T cell receptor (TCR) pathway, enabling sensitive, specific detection of changes in expression, activity level, and phosphorylation state.

what they offer

  • Unparalleled lot-to-lot consistency
  • Superior sensitivity and specificity
  • Extensive validation and characterization

how they work
ABfinity™ antibodies are developed by immunizing animals, screening for desired functionality, and cloning the immunogen-specific antibody genes into high-level expression vectors. The antibodies are produced on a large scale by proprietary expression methods followed by purification with affinity chromatography. ABfinity™ antibodies are produced under ISO conditions with the highest-quality controls, and maximum efforts are taken to ensure that every lot performs consistently.

Immunocytochemistry of Jurkat cells

Immunocytochemistry of Jurkat cells labeled with rabbit anti–ZAP-70 [pY315/pY319].

Read More +

Jurkat cells were either untreated (top left) or treated with H 2O 2 (top right, bottom) and labeled with rabbit anti–ZAP-70 [pY315/pY319] (2 µg/mL). Alexa Fluor® 488 goat anti–rabbit IgG at 1:1,000 was used as a secondary antibody (green). Preincubation of treated cells with the phosphopeptide immunogen decreased signal (bottom right), while preincubation with nonphosphopeptide did not (bottom left). Nuclei were stained with one of the Hoechst dyes (blue).
Product Quantity Species Reactivity
Cat. No.  
Mnk1 [pT197/pT202] ABfinity™ Recombinant Rabbit Monoclonal Antibody 100 µg Hu, B,* Ch,* Cn,* Cp,* Eq,* Mk,* Ms,* P,* Rt,* Sw,* X,* Z* F, IF/ICC, WB 700242
T-bet ABfinity™
Recombinant Rabbit Monoclonal Antibody
100 µg Hu, Cp,* Mk* F, IF/ICC, IHC, WB 700059
ERK1/2 [pT185/pY187] ABfinity™ Recombinant Rabbit Monoclonal Antibody 100 µg Hu, B,* Ch,* Cp,* Ms,* Rt,* X,* Z* E, IHC, WB 700012
JNK1-2 [pT183/pY185] ABfinity™ Recombinant Rabbit Monoclonal Antibody 100 µg Hu, B,* Ch,* Cn,* Cp,* Eq,* Gf,* Mk,* Ms,* Ne*, P,* Or,* Rt,* Sw,* X,* Z* E, IHC, WB 700031
JAK1 [pY1022/pY1023] ABfinity™ Recombinant Rabbit Monoclonal Antibody - Purified 100 µg Hu, B,* Cn,* Cp,* Eq,* Mk,* Ms,* Rt,* Sw,* X,* Z* WB 700028
ZAP-70 [pY315/pY319] ABfinity™ Recombinant Rabbit Monoclonal Antibody 100 µg Ms, Ha,* Rt* F, ICC, WB 700177
* Reactivity predicted but not tested.

Reactivity: B = bovine; Ch = chicken; Cn = canine; Cp = chimpanzee; Eq = equine; Gf = goldfish; Ha = hamster; Hu = human; Mk = monkey (rhesus); Ms = mouse; Ne = nematode; P = primate; Or = orangutan; Rt = rat; Sw = swine; X = Xenopus; Z = zebrafish.
Applications: E = ELISA; F = flow cytometry; ICC = immunocytochemistry; IF = immunofluorescence; IHC = immunohistochemistry; WB = western blotting.

what it is 
The new highly purified Anti-RFP Rabbit Polyclonal Antibody is optimized to detect Red Fluorescent Protein (RFP) chimeras in western blots and immunocytochemistry (ICC) applications.

what it offers 

  • High sensitivity
  • High specificity

how it works 
To produce the anti-RFP antibody, full-length recombinant denatured and nondenatured TagRFP was used as the immunogen, allowing the antibody to detect denatured and native TurboRFP, TurboFP602, TurboFP635, TagBFP, TagFP635, and mKate2 in western and ICC applications.

RFP Rabbit Polyclonal Antibodies

Specificity of Anti-RFP Rabbit Polyclonal Antibody in immunocytochemistry (ICC).

Read More +

HeLa cells were incubated with Organelle Lights™ Mito-RFP and Organelle Lights™ Golgi-GFP. Following fixation and permeabilization, cells were stained with Alexa Fluor® 350 Phalloidin and Anti-RFP Rabbit Polyclonal Antibody ( A), the latter subsequently visualized with Alexa Fluor® 647 goat anti–rabbit IgG antibody (red fluorescence), and imaged ( B). No cross-reactivity of the anti-RFP antibody is observed with GFP (green fluorescence, perinuclear region).
Product Quantity Cat. No.  
Anti-RFP Rabbit Polyclonal Antibody 100 µg R10367 Order Now


what it is
Now you can personalize your Countess® Automated Cell Counter with unique skins and protect its front surface. Each Countess® Care Kit includes one skin, one 2 fl. oz. bottle of screen cleaner, and one microfiber cleaning cloth.

what it offers

  • Pamper and add personality to your cell counter!

how it works
The Countess® Automated Cell Counter is designed to accurately assess cell count and viability and provide information about cell size, all in just 30 seconds. Based on a standard trypan blue assay and requiring no more sample than needed for a hemocytometer, the Countess® Automated Cell Counter is compatible with a wide variety of eukaryotic cells.

  • Learn More about the Countess® Automated Cell Counter—Free Care Kit
Countess skin

Get a FREE Countess® Care Kit.

Buy any Countess® product below, and get a free Countess® Care Kit. Limit of 1 care kit per order.
Product Size Cat. No.  
Countess® Automated Cell Counter 1 each C10227 Order Now
Countess® Automated Cell Counter Starter Kit 1 kit C10310 Order Now
Countess® Automated Cell Counter Lab Starter Kit 1 kit C10311 Order Now
Countess® Cell Counting Chamber Slides, 1,250 slides (2,500 counts) 25 boxes C10313 Order Now
Countess® Cell Counting Chamber Slides, 2,500 slides (5,000 counts) 50 boxes C10314 Order Now
Countess® Cell Counting Chamber Slides, 5,000 slides (10,000 counts) 100 boxes C10315 Order Now


  Maximize flow cytometry experiments
Researchers today are trying to maximize the information they get out of flow cytometry experiments by looking at more parameters in a single sample. Qdot® nanocrystals provide a powerful way to multiply fluorophore selection using commonly available excitation sources. Invitrogen currently offers a growing selection of antibody conjugates using Qdot® 565, Qdot® 605, Qdot® 655, Qdot® 700, and Qdot® 800 nanocrystals.

Our research scientists have prepared an application note that describes tips and tricks, from sample preparation to filter selection, that will help you incorporate Qdot® nanocrystals into your phenotyping experiments.

This application note discusses:

  Advantages of using Qdot® nanocrystal primary antibody conjugates
  Compatibility of Qdot® conjugates with common reagents used for sample preparation
  Combining Qdot® conjugates with organic fluorescent conjugates
  Filter optimization and instrument setup for use of Qdot® nanocrystal conjugates



Eight-color immunostain

Eight-color immunostain combination with low compensation values.
Human peripheral blood mononuclear cells (PBMCs) were stained with Qdot® 605–anti-CD4, Qdot® 655–anti-CD3, Qdot® 705–anti-CD45, FITC–anti-CD2, RPE–anti-CD16+CD56, RPE-Cy7–anti-CD19, APC–anti-CD14, and APC–Alexa Fluor® 750–anti-CD8. Samples were run on a BD™ LSR II flow cytometer. Plots are gated on lymphocytes by side scatter/CD45. Axes are labeled with the filters used; plots are labeled with compensation values.

Quantity Cat. No.
CD3, mouse anti-human (Qdot® 655 conjugated) 100 µL Q10012 Order Now
CD4, mouse anti-human (Qdot® 605 conjugated) 100 µL Q10008 Order Now
CD45, mouse anti-human (Qdot® 705 conjugated) 100 µL Q10062 Order Now


Robust, Stackable 3D Cell Culture Environments
Derda R, Laromaine A, Mammoto A, Tang SKY, Mammoto T, Ingber DE, and Whitesides GM (2009) Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci U S A 106(44):18457–18462.

Studies of cellular function using cultured cells are commonly performed in 2D environments that do not accurately replicate the oxygen and metabolite gradients that influence cells living in the 3D tissue environment. In an effort to more closely approximate the conditions of living tissue, Derda and colleagues created a cell suspension in gel matrix and spotted it onto chromatography paper. When they stacked several cell-infused papers vertically, a 3D culture environment was created, with layers at the top of the stack receiving more nutrient- and oxygen-rich culture medium and layers at the bottom receiving more depleted medium. Because the paper layers were sufficiently strong, stacking, culturing, and then destacking for analysis was simple. This allowed the researchers to look at the effects of oxygen and nutrient gradients without having to disrupt the 3D architecture of the cells in each layer.

As part of their investigation, the group studied each of the eight layers with respect to cell proliferation and DNA damage. They were able to confirm that cells in the lower layers contained significantly lower levels of S-phase entry (measured using the Click-iT® EdU Cell Proliferation Kit) and higher levels of DNA damage (measured using the Click-iT® TUNEL Alexa Fluor® 488 Imaging Assay) than cells in the top layer. By isolating RNA from the layers, the authors noted that cells furthest from the bulk medium not only showed the lowest proliferation but also had the highest expression of the hypoxia markers VEGF and IGFBP3, demonstrating that oxygen gradients (as opposed to nutrients or protons) are the major determinants of cell survival. The authors propose that the combination of paper and hydrogels provides a flexible, more realistic environment for cell biology research.

View the bibliography reference


Product Quantity Cat. No.  
Click-iT® EdU Alexa Fluor® 488 Imaging Kit 1 kit C10337 Order Now
Click-iT® TUNEL Alexa Fluor® 488 Imaging Assay 1 kit C10245 Order Now


Phagocytosis in live mmm cells
  Phagocytosis in live macrophages.
Phagocytosis in live mouse monocyte macrophages (mmm cells, ATCC TIB-67) was visualized by labeling with LysoTracker® Green DND-26  prior to incubating with pHrodo™ E. coli BioParticles® Phagocytosis Kit for Flow Cytometry. Cells were grown overnight, rinsed in prewarmed HBSS, then incubated for 5 min in LysoTracker® Green diluted 1:20,000 in HBSS. After washing 3 times with HBSS, pHrodo™ particles (50 µg/mL) were added and incubated for 10 min.  As the pHrodo™ particles move into the lysosome, the low pH–responsive dye becomes brightly fluorescent. CellMask™ Deep Red Plasma Membrane Stain was then diluted to 5 µg/mL into HBSS for 5 min, and washed 3 times prior to imaging on a Nikon TE-200 Eclipse inverted microscope with a 40x objective using standard filter sets (FITC, TRITC, and Cy5).  LysoTracker® dye is seen in green, pHrodo™ indicator in red, and CellMask™ Deep Red stain in purple. 


Product Quantity Cat. No.  
pHrodo™ E. coli BioParticles® Phagocytosis Kit for Flow Cytometry 1 kit A10025 Order Now
CellMask™ Deep Red Plasma Membrane Stain 100 µL C10046 Order Now
LysoTracker® Green DND-26 20 x 50 µL L7526 Order Now

Thiol-Reactive Alexa Fluor® Dyes

In addition to offering expertly prepared dye conjugates, we also provide you with the opportunity to create your own fluorescent conjugates using reactive dyes. The Alexa Fluor® dyes—a series of superior fluorescent dyes that span the near-UV, visible, and near-IR spectrum—produce the best and brightest conjugates.

For selectively linking an Alexa Fluor® dye to accessible thiol groups on proteins or other molecules, Alexa Fluor® maleimides provide the easiest and most efficient reaction chemistry. Maleimides are excellent reagents for thiol modification, quantitation, and analysis, due to the stable thioether bond that is formed in the reaction.

With these reagents, you can vary both the amount of dye and the target in your labeling reaction to create the perfect Alexa Fluor® conjugate for your research application. The Alexa Fluor® maleimides are also useful for labeling the thiol-containing proteins on the surface of cells, where the polarity of the Alexa Fluor® dye permits sensitive detection of exposed thiols.


Thiol-reactive Alexa Fluor dyes
Cellular imaging with thiol-reactive Alexa Fluor® dyes.
A431 cells incubated with green-fluorescent Alexa Fluor® 488 Transferrin, then fixed and permeabilized. Transferrin receptors were identified with anti–Transferrin Receptor, mouse IgG1 Monoclonal Antibody and visualized with red-fluorescent Alexa Fluor® 555 goat anti–mouse IgG antibody. Yellow fluorescence indicates regions of colocalization. Nuclei were stained with DAPI.


Product Quantity Cat. No.  
Alexa Fluor® 350 C5 maleimide
1 mg A30505 Order Now
Alexa Fluor® 488 C5 maleimide
1 mg A10254 Order Now
Alexa Fluor® 532 C5 maleimide
1 mg A10255 Order Now
Alexa Fluor® 546 C5 maleimide
1 mg A10258 Order Now
Alexa Fluor® 555 C5 maleimide
1 mg A20346 Order Now
Alexa Fluor® 568 C5 maleimide
1 mg A20341 Order Now
Alexa Fluor® 594 C5 maleimide
1 mg A10256 Order Now
Alexa Fluor® 633 C5 maleimide
1 mg A20342 Order Now
Alexa Fluor® 647 C5 maleimide
1 mg A20347 Order Now
Alexa Fluor® 680 C5 maleimide
1 mg A20344 Order Now
Alexa Fluor® 750 C5 maleimide
1 mg A30459 Order Now


  Helping You Reduce Your Environmental Impact

As a premier biotechnology company, we recognize that our first responsibility is to provide high-quality, high-performance products. Life Technologies is also committed to doing our part to minimize our footprint on the environment. Where possible, we believe it is our responsibility to provide you with sustainable product options. When you purchase selected Molecular Probes® products, you’ll notice less packaging but receive the same uncompromised performance.

  • Learn More about Our Greener Product Alternatives



Alexa Fluor Dye widget   Alexa Fluor® Dye Selection Guide Widget
The Alexa Fluor® Dye Selection Guide widget is designed to provide you with a concise and informative set of criteria for choosing the optimal Alexa Fluor® dye for your antibody or protein labeling application. Each page in this guide highlights a different Alexa Fluor® dye, summarizing key spectral data, excitation sources, and relevant product offerings. Full excitation and emission spectra are included for each of the dyes.


Molecular Probes® The Handbook

©2010 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. Feel free to distribute ProbesOnline to friends and colleagues, but please keep this copyright statement intact.