Search
Search
The increasing complexity of semiconductor device structures, along with the shrinking of structural dimensions, means that designing next-generation devices is more challenging and time-consuming than ever before. This, coupled with the fact that the number of technology and design options available is increasing, means a lower probability that any particular design will be commercially successful. As a result, device manufacturers need reliable tools for pathfinding that reduce the number of viable options available and help them implement solutions faster.
The complexity of considering all the chip, package, and system integration options that exist has made implementation an intimidating task. As a result, continuing evolution of the most advanced pathfinding capability has become a requirement in efficient semiconductor device design. Adding to this level of complexity are structures with multifaceted 3D architectures. Isolating defects or resolving material interfaces in a focused-ion-beam (FIB) cut structural cross-section requires highly precise preparation and subsequent scanning electron microscopy (SEM) or scanning transmission electron microscopy (STEM) imaging. Precision FIB editing tools can also perform microsurgery and nanoprototyping of new circuit designs. Finally, due to limited floorspace and budgets, labs are pushing to have multiple analysis options in a single system to get the most comprehensive data in the shortest possible time.
Thermo Fisher Scientific provides a full suite of analytical instruments that enable advanced R&D on innovative logic, memory, power and display device technologies. We offer the most advanced capability to perform high-end atomic-level research and prototyping, using STEM and FIB microscopy.
Las rutinas de metrología TEM avanzadas y automatizadas ofrecen una precisión significativamente mayor que los métodos manuales. Esto permite a los usuarios generar grandes cantidades de datos estadísticamente relevantes, con una especificidad de nivel subangstrom, sin fallos del operador.
Los microscopios de electrones de transmisión de Thermo Fisher Scientific ofrecen imágenes y análisis de alta resolución de dispositivos semiconductores, lo que permite a los fabricantes calibrar conjuntos de herramientas, diagnosticar mecanismos de fallos y optimizar la producción rendimiento general del proceso.
Los sistemas DualBeam de Thermo Scientific proporcionan una preparación precisa de las muestras de TEM para el análisis a escala atómica de dispositivos semiconductores. La automatización y las tecnologías de aprendizaje automático avanzado producen muestras de alta calidad, en la ubicación correcta y con un bajo costo por muestra.
Thermo Fisher Scientific ofrece microscopios electrónicos de barrido para todas las funciones de un laboratorio de semiconductores, desde tareas generales de adquisición de imágenes hasta técnicas avanzadas de análisis de fallos que requieren mediciones precisas de contraste de tensión.
Los diseños cada vez más complejos complican el aislamiento de fallos y defectos en la fabricación de semiconductores. Las técnicas de aislamiento óptico de fallos le permiten analizar el rendimiento de los dispositivos activos eléctricamente para localizar defectos críticos que causan fallos en el dispositivo.
La distribución desigual de la disipación de energía local puede causar aumentos de temperatura importantes y localizados, lo que provoca un fallo del dispositivo. Ofrecemos soluciones únicas para el aislamiento de fallos térmicos con termografía infrarroja de alta sensibilidad (LIT).
Las soluciones exclusivas y avanzadas de edición de circuitos y creación de prototipos, que combinan nuevos sistemas de suministro de gas con una amplia gama de productos químicos y tecnología de haz de iones focalizada, ofrecen un control y una precisión sin precedentes para el desarrollo de dispositivos semiconductores.
A medida que aumenta la complejidad del dispositivo, también lo hace el número de ubicaciones que tienen que ocultar los defectos. El nanosondeo proporciona la ubicación precisa de fallos eléctricos, lo que es fundamental para un flujo de trabajo de análisis de fallos de microscopía electrónica de transmisión eficaz.
La ablación por láser proporciona un fresado de alto rendimiento de dispositivos semiconductores para la adquisición de imágenes y análisis con microscopía electrónica, a la vez que conserva la integridad de las muestras. Acceda a datos en 3D de gran volumen y optimice las condiciones de fresado para adaptarse mejor a su tipo de muestra.

La tomografía de sonda atómica (APT) proporciona un análisis de composición de materiales en 3D con resolución atómica. La microscopía Focused ion beam (FIB) es una técnica esencial para la preparación de muestras de alta calidad, orientación y sitio específico para la caracterización de APT.
La contracción del tamaño de las características, junto con los resultados de diseño y arquitectura avanzados provocan fallos cada vez más complicados para los semiconductores. La reestructuración sin daños de los dispositivos es una técnica crucial para la detección de errores y fallos eléctricos interiores.
Las rutinas de metrología TEM avanzadas y automatizadas ofrecen una precisión significativamente mayor que los métodos manuales. Esto permite a los usuarios generar grandes cantidades de datos estadísticamente relevantes, con una especificidad de nivel subangstrom, sin fallos del operador.
Los microscopios de electrones de transmisión de Thermo Fisher Scientific ofrecen imágenes y análisis de alta resolución de dispositivos semiconductores, lo que permite a los fabricantes calibrar conjuntos de herramientas, diagnosticar mecanismos de fallos y optimizar la producción rendimiento general del proceso.
Los sistemas DualBeam de Thermo Scientific proporcionan una preparación precisa de las muestras de TEM para el análisis a escala atómica de dispositivos semiconductores. La automatización y las tecnologías de aprendizaje automático avanzado producen muestras de alta calidad, en la ubicación correcta y con un bajo costo por muestra.
Thermo Fisher Scientific ofrece microscopios electrónicos de barrido para todas las funciones de un laboratorio de semiconductores, desde tareas generales de adquisición de imágenes hasta técnicas avanzadas de análisis de fallos que requieren mediciones precisas de contraste de tensión.
Los diseños cada vez más complejos complican el aislamiento de fallos y defectos en la fabricación de semiconductores. Las técnicas de aislamiento óptico de fallos le permiten analizar el rendimiento de los dispositivos activos eléctricamente para localizar defectos críticos que causan fallos en el dispositivo.
La distribución desigual de la disipación de energía local puede causar aumentos de temperatura importantes y localizados, lo que provoca un fallo del dispositivo. Ofrecemos soluciones únicas para el aislamiento de fallos térmicos con termografía infrarroja de alta sensibilidad (LIT).
Las soluciones exclusivas y avanzadas de edición de circuitos y creación de prototipos, que combinan nuevos sistemas de suministro de gas con una amplia gama de productos químicos y tecnología de haz de iones focalizada, ofrecen un control y una precisión sin precedentes para el desarrollo de dispositivos semiconductores.
A medida que aumenta la complejidad del dispositivo, también lo hace el número de ubicaciones que tienen que ocultar los defectos. El nanosondeo proporciona la ubicación precisa de fallos eléctricos, lo que es fundamental para un flujo de trabajo de análisis de fallos de microscopía electrónica de transmisión eficaz.
La ablación por láser proporciona un fresado de alto rendimiento de dispositivos semiconductores para la adquisición de imágenes y análisis con microscopía electrónica, a la vez que conserva la integridad de las muestras. Acceda a datos en 3D de gran volumen y optimice las condiciones de fresado para adaptarse mejor a su tipo de muestra.

La tomografía de sonda atómica (APT) proporciona un análisis de composición de materiales en 3D con resolución atómica. La microscopía Focused ion beam (FIB) es una técnica esencial para la preparación de muestras de alta calidad, orientación y sitio específico para la caracterización de APT.
La contracción del tamaño de las características, junto con los resultados de diseño y arquitectura avanzados provocan fallos cada vez más complicados para los semiconductores. La reestructuración sin daños de los dispositivos es una técnica crucial para la detección de errores y fallos eléctricos interiores.
A medida que los dispositivos semiconductores se reducen y se vuelven más complejos, se necesitan nuevos diseños y estructuras. Los flujos de trabajo de análisis en 3D de alta productividad pueden reducir el tiempo de desarrollo de dispositivos, maximizar el rendimiento y garantizar que los dispositivos satisfacen las necesidades futuras del sector.