TRIzol™ Reagenz
TRIzol™ Reagenz
Invitrogen™

TRIzol™ Reagenz

TRIzol™ Reagenz ist ein vollständiges, gebrauchsfertiges Reagenz für die Isolierung hochwertiger Gesamt-RNA oder die gleichzeitige Isolierung von RNA, DNA undWeitere Informationen
Have Questions?
Ansicht ändernbuttonViewtableView
KatalognummerMenge
15596026100 ml
15596018200 ml
Katalognummer 15596026
Preis (EUR)
287,65
Exklusiv online
347,00
Ersparnis 59,35 (17%)
Each
Zum Warenkorb hinzufügen
Menge:
100 ml
Preis (EUR)
287,65
Exklusiv online
347,00
Ersparnis 59,35 (17%)
Each
Zum Warenkorb hinzufügen
TRIzol™ Reagenz ist ein vollständiges, gebrauchsfertiges Reagenz für die Isolierung hochwertiger Gesamt-RNA oder die gleichzeitige Isolierung von RNA, DNA und Proteinen aus einer Vielzahl biologischer Proben. Diese monophasische Lösung aus Phenol und Guanidinisothiocyanat wurde entwickelt, um innerhalb einer Stunde getrennte Fraktionen von RNA, DNA und Proteinen aus Zell- und Gewebeproben menschlichen, tierischen, pflanzlichen, Hefe- oder bakteriellen Ursprungs zu isolieren.

Hauptmerkmale des TRIzol™ Reagenz:

• Ermöglicht die Isolierung von RNA, DNA und Protein aus der gleichen Probe
• Verfügt über ein außergewöhnliches Lysevermögen auch bei schwierigen Probearten
• Optimierte Formulierungen und Protokolle für Gewebe, Zellen, Serum, Viren und Bakterien

RNS aus mehreren Probenvolumina und -quellen
DasTRIzol™ Reagenz eignet sich gut für kleine Gewebe- (50–100 mg) und Zellmengen (5 × 106) sowie für große Gewebe- (≥1 g) und Zellmengen (>107) und wird mit Protokollen für die Reinigung von Proben menschlichen, tierischen, pflanzlichen oder bakteriellen Ursprungs geliefert. TRIzol™ Reagenz dient der Erhaltung der Integrität der RNA aufgrund von hochgradig effektiver Hemmung der RNase-Aktivität, wenn bei der Probenhomogenisierung Zellen gelöst und Bestandteile aufgelöst werden. Die einfache Funktionsweise von TRIzol™ Reagenz ermöglicht die gleichzeitige Verarbeitung einer Vielzahl von Proben. Das gesamte Verfahren kann in 1 Stunde abgeschlossen werden. Die mit dem TRIzol™ Reagenz isolierte Gesamt-RNA ist frei von Protein- und DNA-Kontamination.

Formuliert für die Isolierung mehrerer molekularer Targets
Das TRIzol™ Reagenz ermöglicht Ihnen die sequentielle Fällung von RNA, DNA und Proteinen aus einer einzigen Probe. Nach Homogenisieren der Probe mit TRIzol™ Reagenz wird Chloroform hinzugegeben, und das Homogenat trennt sich in eine klare wässrige obere Schicht (die die RNA enthält), eine Grenzschicht und eine rote organische untere Schicht (mit DNA und Proteinen). RNA wird aus der wässrigen Schicht mit Isopropanol ausgefällt. Die DNA-Fällung aus der organischen Grenzschicht erfolgt mit Ethanol. Zum Schluss wird das Protein aus dem Phenol-Ethanol-Überstand mit Isopropanol ausgefällt. Ausgefällte RNA, DNA bzw. Protein wird gewaschen, um Verunreinigungen zu entfernen, und anschließend für den Einsatz in Folgeanwendungen resuspendiert.
Nur für Forschungszwecke. Darf nicht für diagnostische Verfahren eingesetzt werden.
Specifications
Elutionsvolumen20 to 600 μL
EndprodukttypGesamt-RNA, Transkriptom-RNA, Mikro-RNA
Zur Verwendung mit (Anwendung)Quantitative Echtzeit-PCR (qPCR), Reverse Transkriptase-PCR (RT-PCR), Erstellung von cDNA-Bibliotheken, Nuklease Protektionsassays, Northern Blotting, Cloning
Hochdurchsatz-KompatibilitätNicht mit hohen Durchsatz kompatibel (manuell)
Aufreinigungszeit1 h
Menge100 ml
VersandbedingungRaumtemperatur
AusgangsmaterialmengeBis zu 1 g Gewebe oder 1 x 10^7 Zellen
ErtragDNA: ≤7 μg
RNA: ≤73 μg
Protein: varies
Isolation TechnologyOrganische Extraktion
ProbentypBakterien, Blut, Pflanzen, Pflanzenproben, Hefe
Unit SizeEach
Inhalt und Lagerung
Eine Flasche. Bei Raumtemperatur lagern.

Häufig gestellte Fragen (FAQ)

I'm getting a high A260/A280 ratio for RNA after extraction with TRIzol Reagent. What could be the cause of this?

Degraded RNA can cause an increased absorbance at 260 nm.

Find additional tips, troubleshooting help, and resources within ourRNA Sample Collection, Protection, and Isolation Support Center.

I'm getting a precipitate at the bottom of the tube following centrifugation after adding chloroform (before isopropanol was added). What could be the cause of this?

This is most likely polysaccharides or cell membranes; DNA should be in the interphase. In samples containing blood (e.g., liver), a red viscous layer may be visible on top of the pellet. This is most likely due to blood products and should not be carried over with the supernatant.

During phase separation with TRIzol Reagent, I see a yellowish-brown or pinkish aqueous phase. What is causing this?

- This is common with skin samples. It is assumed that there is fat in these samples, and the fat micelles float during the centrifugation. In skin samples, the micelles pick up melanin pigment and cause the aqueous phase to appear colored. Fat micelles may also pick up pigment from the TRIzol Reagent itself and cause a pinkish color. If a sample is thought to contain fat, the sample homogenate in TRIzol Reagent may be centrifuged prior to addition of chloroform. The fat will appear as a clear layer at the top of the supernatant; this should be pipetted off and discarded.
- If a sample contains a lot of blood, the aqueous phase may appear cloudy and/or yellowish (this may be due to iron in the hemoglobin). If the centrifuge used is not cold, the organic phase will be a deeper maroon color; some of this color may come into the aqueous phase and cause it to appear orange or yellow.
- A pinkish aqueous phase may also be caused by overdilution of the sample (i.e., a sample to TRIzol Reagent ratio > 1:10), as well as too much salt or protein in the sample. This can cause premature phase separation, which can be remedied by adding a bit more TRIzol Reagent to the sample. If the RNA is isolated from a pinkish aqueous phase, chances are that it will be contaminated with DNA.

I isolated RNA from FFPE tissue and got very poor RNA quality and yield. How can I improve the overall RNA quality and yield?

These are our recommendations:

1. Upstream tissue procurement and tissue specimen preparation—if possible, fix tissues within one hour of surgical resection. Extensive degradation of RNA can occur before completion of the fixation process. The optimal fixation time is 12-24 hours, using neutral-buffered formalin or paraformaldehyde. Fixed tissues should be thoroughly dehydrated prior to the embedding process.
2. Block storage—storage of blocks without cut faces, when possible, prevents ongoing damage from exposure to atmospheric oxygen, water, and other environmental factors such as light and infestation (fungus, insects, etc.).
3. Choice of tissue type, size, and amount being used for RNA isolation—the recommended tissue thickness is 10-20 µm. The number of sections used is determined by the tissue type (which impacts cell density) and surface area (recommended size: 50-300 mm2). Excess starting material can cause filter clogging, resulting in poor yield.
4. Avoid using an excessive amount of paraffin for embedding tissues—when possible, excess paraffin should be trimmed away prior to starting the purification protocol. For xylene-based purification methods, two xylene treatments at room temperature should be sufficient for complete deparaffinization. If desired, you can perform a more rigorous 37-55 degrees C treatment for up to 30 minutes. After the xylene deparaffinization, it is crucial that the 100% ethanol is completely removed and the pellets are dry after the two 100% ethanol washes. The magnetic bead method employs novel chemistries to deal with the paraffin that limits input to 20 µm sections.

Read more about RNA isolation from FFPE tissues here (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/rna-extraction/rna-sample-extraction/working-with-ffpe-samples.html).

My sample has a high content of proteoglycans and/or polysaccharides. Are there any modifications that I should make to the TRIzol protocol for RNA isolation?

If a sample is known to have a high content of proteoglycans and/or polysaccharides (such as rat liver, rat aorta, plants), the following modification of the RNA precipitation step should remove these contaminating compounds from the isolated RNA:

- Add 0.25 mL of isopropanol to the aqueous phase followed by 0.25 mL of a high-salt precipitation solution (0.8 M sodium citrate and 1.2 M NaCl; no pH adjustment necessary) per 1 mL of TRIzol Reagent used for homogenization. Mix the resulting solution, centrifuge, and proceed with isolation as described in the protocol.

This modified precipitation effectively precipitates RNA and maintains proteoglycans and polysaccharides in a soluble form. To isolate pure RNA from plant material containing a very high level of polysaccharides, the modified precipitation should be combined with an additional centrifugation of the initial homogenate. In general, we do not recommend high-salt precipitation if polysaccharide or proteoglycan contamination is not a concern, since it is an extra step and there is otherwise no significant advantage to adding this step. When purifying an RNA sample where polysaccharide or proteoglycan contamination is not an issue, in general, the total RNA yield will be same with or without the high salt. There may be small changes in the RNA profile reflected by slightly decreased amounts of tRNA. The high-salt precipitation reduces tRNA in the sample.

Zitierungen und Referenzen (254)

Zitierungen und Referenzen
Abstract
Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.
Authors:Sugimoto M,Fujikawa A,Womack JE,Sugimoto Y
Journal:Proceedings of the National Academy of Sciences of the United States of America
PubMed ID:16611727
Mastitis, a mammary gland inflammation in response to bacterial infection, is a major problem in the dairy industry. We found that cows susceptible to mastitis have a three-base insertion in a glycine-coding stretch of the gene for forebrain embryonic zinc finger-like (FEZL), a transcription factor with a role in neuronal ... More
Hyaluronan-CD44-ERK1/2 regulate human aortic smooth muscle cell motility during aging.
Authors:Vigetti D,Viola M,Karousou E,Rizzi M,Moretto P,Genasetti A,Clerici M,Hascall VC,De Luca G,Passi A
Journal:The Journal of biological chemistry
PubMed ID:18077444
Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics.
Authors:Grolleau Annabelle; Bowman Jessica; Pradet-Balade Bérengère; Puravs Eric; Hanash Samir; Garcia-Sanz Jose A; Beretta Laura;
Journal:J Biol Chem
PubMed ID:11943782
Rapamycin has been shown to affect translation. We have utilized two complementary approaches to identify genes that are predominantly affected by rapamycin in Jurkat T cells. One was to compare levels of polysome-bound and total RNA using oligonucleotide microarrays complementary to 6,300 human genes. Another was to determine protein synthesis ... More
Translational regulation of the JunD messenger RNA.
Authors:Short John D; Pfarr Curt M;
Journal:J Biol Chem
PubMed ID:12105216
JunD, a member of the Jun family of nuclear transcription proteins, dimerizes with Fos family members or other Jun proteins (c-Jun or JunB) to form the activator protein 1 (AP-1) transcription factor. The junD gene contains no introns and generates a single mRNA. Here we show that two predominant JunD ... More
A novel single amino acid deletion caspase-8 mutant in cancer cells that lost proapoptotic activity.
Authors:Liu B, Peng D, Lu Y, Jin W, Fan Z.
Journal:J Biol Chem
PubMed ID:12055196
'Caspase-8 is an important initiation caspase that activates the caspase cascade during death receptor-mediated apoptosis. We here report a novel caspase-8 mutant with a naturally occurring deletion of leucine 62 (Delta Leu62casp-8). Delta Leu62casp-8 has a shorter half-life than its wild-type counterpart. Unlike wild-type caspase-8, Delta Leu62casp-8 failed to interact ... More